MultivaporTM Application Guide

en

Table of Contents

This document describes all aspects which are important for the evaporation of various solvents using the Multivapor. This handbook is a guideline for the evaporation of your specific solvent and mixtures at high performance. Some standard applications are described in detailed Application Notes. best@buchi are found on the internet under www.buchi.com, then Applications and best@buchi. Please contact your local BUCHI representative for additional information on a particular application.

1	Introd	luction	3
	1.1	Multivapor and Configurations	3
	1.1.1	Standard configuration	3
	1.1.2	Variations and Versions	4
	1.1.3	Recommended accessories	4
	1.1.4	Limits of the Multivapor	4
	1.2	The process of distillation	5
	1.3	General guidelines for evaporation of solvents	5
	1.3.1	Correct load of the condenser	6
	1.3.2	Manual distillation and the Δt 25/20°C rule	6
	1.3.3	Distillation with gradients	6
	1.3.4	EasyVac function	7
	1.4	Parameters and impact on distillation	8
	1.4.1	Heat medium	8
	1.4.2	Vacuum	8
	1.4.3	Temperature of condenser	8
	1.4.4	Rotation speed	9
	1.4.5	Vessel type	9
	1.4.6	Solvent volume	9
	1.4.7	Solvent mixtures	9
	1.4.8	Multivapor P-6 and P-12	10
	1.4.9	Troubleshooting	10
	1.5	Sample applications	11
2	Evapo	pration of pure solvents	13
	2.1	List of solvents and classification	13
	2.2	Calculation of boiling point from applied pressure	13
	2.3	Evaporation of low-boiling solvents	14
	2.3.1	Solvent: Acetone (≥99.8%)	14
	2.3.2	Solvent: Ethyl acetate (Analytical grade)	15
	2.3.3	Solvent: <i>n</i> -Hexane (purum ≥95.0%)	16

	2.3.4	Solvent: <i>n</i> -Hexane – P-6 (purum ≥95.0%)	17
	2.4	Evaporation of medium-boiling solvents	18
	2.4.1	Solvent: Xylene (Mixture of isomers, purum ≥97.0%)	18
	2.5	Evaporation of high-boiling solvents	19
	2.5.1	Solvent: Dimethylformamide, DMF (purum, ≥98.0%)	19
	2.6	Evaporation of polar protic solvents	20
	2.6.1	Solvent: Ethanol (4.8% methanol, purum, ≥99.8%)	20
	2.6.2	Solvent: Distilled water, H ₂ O	21
3	Evapo	pration of solvent mixtures	22
	3.1	Hexane / dichloromethane 7:3 (e.g. flash chromatography)	22
	3.1 3.2	Hexane / dichloromethane 7:3 (e.g. flash chromatography) Ethanol / water 6:4 (e.g. reverse phase-chromatography)	22 24
4	3.2 3.3	Ethanol / water 6:4 (e.g. reverse phase-chromatography)	24
4	3.2 3.3	Ethanol / water 6:4 (e.g. reverse phase-chromatography) Azeotrope chloroform / methanol 8:1 (e.g. flash chromatography)	24 26
4	3.2 3.3 Apper	Ethanol / water 6:4 (e.g. reverse phase-chromatography) Azeotrope chloroform / methanol 8:1 (e.g. flash chromatography) ndix A – Reference BUCHI Application Notes	24 26 29
4	3.2 3.3 Apper 4.1 4.2	Ethanol / water 6:4 (e.g. reverse phase-chromatography) Azeotrope chloroform / methanol 8:1 (e.g. flash chromatography) ndix A – Reference BUCHI Application Notes Fat Determination in Shortbread using SpeedExtractor E-916	24 26 29 29
-	3.2 3.3 Apper 4.1 4.2	Ethanol / water 6:4 (e.g. reverse phase-chromatography) Azeotrope chloroform / methanol 8:1 (e.g. flash chromatography) ndix A – Reference BUCHI Application Notes Fat Determination in Shortbread using SpeedExtractor E-916 Flash chromatography on cartridges for the separation of plant extracts	24 26 29 29 31

© BÜCHI Labortechnik AG, 2012, Dr. D. Rütti, M. Heierli

1 Introduction

1.1 Multivapor and Configurations

The Multivapor is a compact 6 or 12 position parallel vortex evaporator. Since the efficiency of evaporation depends on a variety of parameters, careful optimization for each type of sample/evaporation task is important. This handbook provides practical guidelines to successfully develop new applications with the goal that you could enjoy your Multivapor.

1.1.1 Standard configuration

If not indicated otherwise, the following Multivapor configuration was used in this booklet (**Figure 1**).

Component	Configuration		
Multivapor	P-12 (MP11001S12) 12 positions		
Condenser	PETP Cover and Adapters Type S condenser for tap water or a recirculating chiller		
Vacuum controller V-855, Software V 3.03			
Vacuum pump	V-700, Woulff bottle, Secondary condenser		
Chiller	F-105, Set to 5°C Cooling power at 15°C: 500 W Flow rate (no accessories): 1.8 l/min		
Vessel	BUCHI SpeedExtractor tube 60 ml 30 ml max working volume (49535)		
Options	None (no Woulff bottle, no Protective shield, no frits)		

Figure 1: BUCHI Multivapor P-12 with type S condenser, vacuum pump V-700 and vacuum controller V-855

1.1.2 Variations and Versions

Component	Variants
Tube adapter	PETP (white, blind adapter: black)
	PEEK (ecru)
Seals for tube adapters	PTFE
Vacuum cover	PETP (black)
	PEEK (ecru)
O-ring for the vacuum cover adapter	EPDM (black)
	FKM (green)
	FFKM (black)
Vacuum cover seal	EPDM
Vacuum tube	Ribbed PFA with PTFE seals

The PETP vacuum cover is equipped with EPDM O-rings. A set of 12 FKM O-rings is enclosed. Optionally, there are highly resistant FFKM O-rings available. The PEEK vacuum cover is equipped with FFKM O-rings by default.

For order codes please consider the operation manual or contact your local dealer.

1.1.3 Recommended accessories

The most convenient way to achieve the right setting is to use the BUCHI vacuum controller V-855 (**Figure 2**). With this instrument, the pressure is either determined automatically using the EasyVac function (P-12 only), or it can be easily determined by means of an integrated temperature/pressure converter (the so-called Solvent Library) which is available for a variety of solvents. Moreover, pressure gradients can be programmed to ensure smooth and reproducible evaporation with the highest possible yields.¹

The use of a chiller (**Figure 3**) is highly recommended. A chiller enables a constant low temperature without tap water input. A low condenser temperature is needed to distill at low temperatures without loss of solvents into the environment. BUCHI chillers can be controlled by the V-855 vacuum controller.

1.1.4 Limits of the Multivapor

The limit is given by the lowest sensible working pressure of approximately 25-30 mbar (V-700) and the unheated cover leading to condensation in the cover of certain solvents. For high-boiling solvents, the Syncore Polyvap with heated cover is recommended.

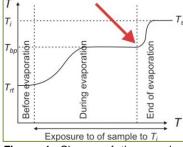
Figure 2: BUCHI vacuum controller V-855 (professional)

Figure 3: BUCHI recirculation chiller

¹ Optimizing the evaporation using the Syncore® Analyst, recovery of 94±3% was achieved for naphthalene in PAH determination of soil samples. See: J. Cavegn, B. Haag, R. Hartmann, Trace analysis of PAHs: evaluation of two extraction methods (EPA3541 and EPA3545) and optimization of subsequent concentration, best@buchi no. 51/2008.

The Multivapor is limited when the task is to concentrate to a defined volume instead to dryness. For this application, the Syncore Analyst with cooled appendix was developed.

1.2 The process of distillation


Vacuum evaporation is the process of causing the pressure in a liquidfilled container to be reduced, causing the liquid to evaporate at a lower temperature than normal. A distillation consists of vaporization and subsequent condensation. When these two processes are well parted, separation of substances is possible based on differences in vapor pressure. The transport of the vapor is driven by a thermal pump, a dynamic difference in pressure between places of evaporation and condensation.

The evaporation speed is positively correlated with the amount of heat supplied by the heating plate. However, there is no correlation between the set temperature on the instrument (T_i) and the temperature of the sample (T_s). Liquids cannot assume a temperature higher than their boiling point (T_{bp}), which is solely determined by the applied vacuum. The only critical point for the sample is at the end of an evaporation to dryness process (**Figure 4**).

In the condenser, the heat of evaporation is then withdrawn from the vapor; the vapor condenses.² For best performance and highest recovery of the solvent, it is important to maintain a balanced evaporation-condensation process. Whenever more substance is vaporized than is condensed in the cooler, the pressure within the apparatus rises. To maintain the set pressure, the vacuum pump draws continually pulling the vaporized solvent into the environment. This must be avoided.³ Pollution is prevented by assembling a secondary condenser behind the pump, or preferred, adjusting the evaporation to the cooling capacity of the condenser. Ideal conditions are achieved when the condensate covers approximately the half of the condenser (**Figure 5**).

1.3 General guidelines for evaporation of solvents

To achieve the best evaporation conditions, five parameters, the temperature of the heating plate, the boiling point, the cooling water temperature, and the rotational speed of the orbital movement, must be attuned to one another. A tight system enables best distillation performance. Therefore, the apparatus should be checked for leaks without the solvent in it. A well-sealed system keeps the vacuum losses within bounds (< 10 mbar / 5 min at vacuum of 20 mbar).

Figure 4: Change of the sample temperature during the evaporation process with a sudden rise in temperature at the end of the process.

² This phenomenon is referred to as a thermal pump. See: The laboratory assistant, BÜCHI Labortechnik AG, second edition, p. 24.

³ It is estimated that worldwide approx. 160'000 liters of solvent per day are discharged into the air due to unbalanced evaporation and condensation speeds. See: The laboratory assistant, BÜCHI Labortechnik AG, second edition, p. 47.

1.3.1 Correct load of the condenser

Evaporated solvent is condensed in the condenser and evaporation heat is dissipated. Best performance and highest recovery of the solvent are generally achieved when the condensate covers approximately the half of the height of the condenser (**Figure 5**).

1.3.2 Manual distillation and the Δt 25/20°C rule

A simple rule of thumb can be used as a starting point to find good settings for the heating medium, the vapor temperature, and the cooling temperature: the Δt 25/20°C rule. This rule specifies the temperature difference between the three zones. For instance, when the temperature on the instrument is set to 55°C, the vacuum should be set that the boiling point is 30°C, which is 25°C lower. In order to achieve sufficient condensing, cooling temperature of another 20°C lower also 10°C is recommended (**Figure 6**).

The following steps are performed in practice:

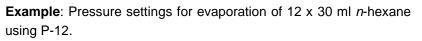
- 1. Set the heating medium to the desired temperature according to the stability of the product and the solvent
- Determine the pressure using the Solvent Library so that a boiling point of 25°C lower results
- 3. Set the cooling temperature another 20°C lower

If the distillation performs too slowly, either increase vacuum or heating temperature. Aerate respectively decrease vacuum when sample is foaming or bumping. Distillation of problematic solutions can be distilled without supervision by using the gradient function (see Section 1.3.3). Further troubleshooting is found in detail in Section 1.4.9.

1.3.3 Distillation with gradients

Distillation of problematic solutions can be handled without supervision by using the gradient function. Setting the pressure manually and immediately to the corresponding boiling point accommodates the risk of bumping. To avoid boiling retardation or loss of analyte, program a pressure gradient. Gradients also allow convenient integration of "drying" steps by applying a very low pressure during some minutes after the effective evaporation. To prevent reevaporation of solvent from the receiving flask during "drying", cool the distillate with ice bath or refrigerated receiver.

Optimization of the conditions for your specific problem is usually started with manual distillation. Define the desired boiling point according to the sensitivity of the product and the Δt 25/20°C rule. Start 500 mbar above the calculated pressure. Decrease the pressure quickly by 300-400 mbar, and then approximate slowly the desired


Figure 5: The vacuum and cooling conditions are ideal when the condensate covers approximately half of the height of the condenser.

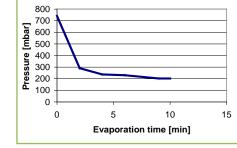


Figure 6: Illustration of the Δt 25/20°C rule.

boiling point. Keep the pressure constant until the evaporation is finished. For highly volatile compounds slow aeration over 1-2 min is recommended.

Solvent		<i>n</i> -hexane	800 1
Desired boiling poin	it, T_{bp}	30°C	700 006 mpar 000
Pressure derived fro	om the solvent list	241 mbar	
Instrument tempera	ture, T_i	55°C	
Pressure gradient			e 400 300 200 100 0
Starting point	241 + 500 = 741 mbar		0
Ramp	741-291 mbar	2 min	
	291-237 mbar	2 min	
	237-230 mbar	2 min	
	230-202 mbar	3 min	
Constant	202 mbar	1 min	_

A first rapid decrease in pressure prevents heating up the sample. The following gradient decreases bumping, retardation and foaming of the product. After a satisfying manual distillation, the repeat function (V-855 only) displays the last distillation for easy documentation and repetition.

1.3.4 EasyVac function

The EasyVac mode (Vacuum controller V-855, software version 3.03 or higher) serves to carry out an automatic and gentle distillation based on the vapor pressure of the solvent. The process measures pressure differences over time and adjusts the vacuum automatically depending on the efficiency of the condenser. This mode is suited for distilling single solvents with the Multivapor under certain prerequirements.

Prerequirement				
Rack temperature	≥ 50°C			
Solvents with boiling point	< 100°C			
Total evaporated volume	≥ 80 ml			
Only weak foaming products				
Glassware diameter	< 12 mm			

The operator may interact at any time during automatic distillation and the process continues according to the manual set parameters.

EasyVac Multivapor P-12	Detection start point	Distillation	Detection end point
Glassware diameter 13 < x < 19 mm	\checkmark	\square	
Glassware diameter > 19 mm	\checkmark	\checkmark	V

EasyVac Multivapor P-6	Detection start point	Distillation	Detection end point
Low-boiling solvents	V	(図)	Often too early

Please note: A tight system is crucial for correct determination. The EasyVac mode only works with a speed controlled vacuum pump (V-700 or V-710). The distillation time can be increased by 30 to 100% compared to manual distillation.

1.4 Parameters and impact on distillation

1.4.1 Heat medium

Supplying more energy to the solvent by elevated heat medium temperature will accelerate the distillation process. This additional energy will dissipate in the condenser leading to possible losses of solvent to the environment due to an overburdened condenser. Leaking solvent might condense in the pump leading to decreased pump performance. Acceleration of the distillation increases risk of foam and bumping sample. Another danger is the loss of analytes due to increased temperature at the end of an evaporation process.

Water in the crystal rack ensures good heat transfer to the sample. Best evaporation performance is achieved when the water level reaches at least the solvent level. However, do not overfill or spill of water by the vortex is expected.

1.4.2 Vacuum

Similarly, decreasing of boiling point of the solvent by reduction of pressure will accelerate the distillation process. This additional energy will dissipate in the condenser leading to possible loss of solvent in the environment due to an overburden of the condenser capacity. If the system is insufficiently tight for the applied vacuum, the pump continually draws solvent, leading to known problems. Analytes might be lost due to boiling. Acceleration of the distillation increases risk of foam and bumping sample.

1.4.3 Temperature of condenser

For efficient condensation of the vapor, the temperature of the condenser should be at least 15-20°C less of the vapor temperature. If the temperature of the cooling medium is fixed e.g. by the temperature of tap water, adjust the pressure and vapor temperature accordingly higher. Otherwise, exhaust of vapor into the environment might occur. Ideal conditions are achieved when the condensate covers approximately the half of the condenser.

Increase distillation speed Increase temperature of heat

medium **Risks** Loss of analytes Heat degradation of sample Foam and bumping of sample

Increase distillation speed Increase vacuum Risks Loss of analytes Foam and bumping of sample

1.4.4 Rotation speed

The surface area of the sample influences the evaporation. The larger the surface, the faster is the evaporation. The surface area is determined by the rotational speed of the heating plate. A faster rotation increases the surface area and hence accelerates the process. However, increasing the rotational speed also increases the vortex of the heating medium water. This might result in a reduced heat transfer surface.

Generally speaking, start the optimization with a pronounced vortex. For the Multivapor, this is typically the case at position 8. Then increase rotational speed until an optimal position for evaporation speed and handling of the sample (foam, bumping) is found.

1.4.5 Vessel ty	/pe
-----------------	-----

The vessel shape (**Figure 7**) influences greatly the distillation performance. Especially the length and diameter are important characteristics. Distillation speed of ethanol and acetone were decreased by approx. 50% in a 50 ml Falcon tube (29 x 114 mm, conical end) and reaction tube (16 x 130 mm) compared to the SpeedExtractor tube (28 x 140 mm). Applied pressures could be transferred but the gradient time will be extended accordingly.

The vessel for quickest distillation is as long and as wide in diameter as possible without conical parts.

1.4.6 Solvent volume

The volume of evaporated ethanol showed no effect on the speed using SpeedExtractor tubes. However, highly volatile solvents and large volumes might lead to starvation of the heat medium, thus elongating the evaporation. A further increase of the vacuum is advisable.

P-12 compatible tubes are preferably filled to only 50% of the total volume with sample. Standard P-6 tubes and SpeedExtractor vessels have working volumes of 150 and 180 ml, respectively.

Applied pressures could be transferred but the gradient time will be extended accordingly.

1.4.7 Solvent mixtures

Mixtures are evaporated by removing one solvent after the other in sequence according to the increasing boiling points. The purpose of this, in general, is not to achieve a sharp separation of the individual components, but rather to concentrate on the dry residue. A number of problems such as boiling delays or undesirable solvent emissions can occur in the area of transitioning from one component to the next.⁴ In addition to this, a time or concentration dependent foam build-up can occur.

In	crease distillation speed			
Rotation speed 8-10				
R	isks			
S	pill of heat medium			
L	arge vortex decreases heat			
tr	ansfer			
F	oam and bumping of sample			

Figure 7: Selection of compatible P-12 tubes. *From left*. BUCHI SpeedExtractor tube, 50 ml Falcon and test tube.

⁴ A. Talamona, G. Schönenberger, Vacuum control during vaporization of problematic solutions, best@buchi no. 06/2001.

These dangers are avoided if the system pressure is reduced slowly using the gradient function. Start with optimal conditions for lowerboiling solvent according to the gradient rule.

Some mixtures of a certain composition, however, cannot be separated by distillation. They are called azeotrope. When an azeotrope is boiled, the resulting vapor has the same ratio of constituents as the original mixture.

Do not go under lowest condensation temp with boiling point of lowestboiling solvent, or use a well-cooled receiving vessel. Otherwise, reevaporation from receiving flask might occur reducing evaporation performance.

1.4.8 Multivapor P-6 and P-12

Using SpeedExtractor vessels for P-6 and P-12, distillation speed increased by 20% with P-6 compared to P-12 (tested with *n*-hexane). Applied pressures could be transferred but the gradient time will be extended accordingly.

1.4.9 Troubleshooting

Problem	Problem Action		
Foam	 Reduce vacuum Program ramp Install frit in the adapter 	Section 1.4.2 Section 1.3.3 See Multivapor manual	
Overheating, Bumping up	 Reduce vacuum Program ramp Reduce heat Use vessel with larger diameter Reduce time span from immersing the vessels into the heat medium to start vacuum and rotation 	Section 1.4.2 Section 1.3.3 Section 1.4.1 Section 1.4.5	
Condensation in cover	 Reduce boiling temperature (increase vacuum) and adjust heat medium as well as condenser temperature accordingly Reduce length of vacuum tubing to condenser 		
Slow distillation speed	 Improve heat transfer Optimize rotational speed Increase vacuum Increase temperature 	Sections 1.4.1, 1.4.4, 1.4.8, 1.4.5 Section 1.4.4 Section 1.4.2 Section 1.4.1	

1.5 Sample applications

The Multivapor was designed to fit excellently in your analytical work flow without transferring of vessels. Samples are often concentrated after extraction (BUCHI Extraction units, SpeedExtractor) or reaction processes as well as after separation by flash chromatography (BUCHI Sepacore).

Extraction: Fat Determination in Shortbread

The determination of fat in food and feed is a routine procedure for quality assurance and labeling. Fat was determined in butter shortbread after homogenization of the sample and extraction with the SpeedExtractor E-916. The solvent was evaporated in parallel using the Multivapor P-6. The total fat content was determined gravimetrically after the extract has been dried to a constant weight.⁵

Figure 8: Shortbread

Chromatography: Separation of plant extracts

Flash chromatography systems can be used not only for rapid and easy purification of synthetic products, but also for the separation of complex natural product mixtures such as plant extracts.

Sepacore cartridges enabled a good separation of compounds with a broad range of polarity, as typically found in plant extracts. The chromatographic resolution remained, however, lower than that achieved by medium pressure liquid chromatography (MPLC) on columns packed with material of smaller particle size. For poorly soluble extracts, solid introduction gave better results than liquid injection.⁶

To recover these extracts in pure form, the mobile phase of the selected fractions will be evaporated. This is preferrably performed using Multivapor, as the collection vessel can be used directly for evaporation without sample transfer.

Figure 9: Separation of plant extracts

⁵ Fat in Shortbread using SpeedExtractor E-916 and Multivapor P-6. BUCHI Application Note no. 005/2009.

⁶ Weber P, Schafroth N, Hamburger M, Potterat O. 2010. Flash chromatography on cartridges for the separation of plant extracts – Rules for the selection of chromatographic conditions, and comparison with MPLC. Poster in collaboration with University of Basel. http://www.buchi.com/Applications.19910.0.html.

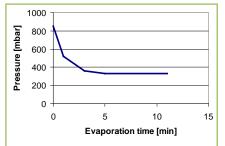
2 Evaporation of pure solvents

2.1 List of solvents and classification

Solvent	Enthalpy of Boiling vaporization point		Density [g/ml]	Classification	Constant b	
	•	[J/ml]	[J/g]			
Acetic acid	118°C	729	695	1.049	Polar protic	0.183
Acetone	56°C	437	553	0.79	Low boiling	0.196
Acetonitrile (MeCN)	82°C	570	725	0.786	Low boiling	0.195
Benzene	80°C	481	548	0.877	Low boiling	0.202
n-Butanol	118°C	502	620	0.81	Polar protic	0.155
Chlorbenzene	132°C	417	377	1.106	Medium boiling	0.202
Chloroform	61°C	392	264	1.483	Low boiling	0.203
Cyclohexane	81°C	303	389	0.779	Low boiling	0.206
Cyclopentane	40°C	313	417	0.751	Low boiling	0.207
Dichloromethane (DCM)	40°C	439	330	1.33	Low boiling	0.194
Diethyl ether	35°C	278	389	0.714	Low boiling	0.200
Dimethylformamide (DMF)*	153°C	549	578	0.949	High boiling	0.180
1,4-Dioxane	101°C	400	388	1.033	Medium boiling	0.200
Ethanol	78°C	694	879	0.789	Polar protic	0.159
Ethyl acetate	77°C	355	394	0.9	Low boiling	0.189
Formic acid	101°C	601	493	1.22	Polar protic	0.200
n-Hexane	69°C	243	368	0.66	Low boiling	0.206
Isopropanol (IPA)	82°C	549	699	0.786	Polar protic	0.154
Methanol	65°C	971	1227	0.791	Polar protic	0.167
Pentane	36°C	239	381	0.626	Low boiling	0.214
n-Propanol	97°C	633	787	0.804	Polar protic	0.154
Tetrahydrofuran (THF)	66°C	395	444	0.889	Low boiling	0.192
Toluene	111°C	370	427	0.867	Medium boiling	0.202
Water	100°C	2261	2266	0.998	Polar protic	0.167
Xylene (mixture of isomers)	138.5°C	338	389	0.87	Medium boiling	0.199

*) Distillation of high-boiling solvents is not recommended with the Multivapor.

2.2 Calculation of boiling point from applied pressure


$$T_p = \frac{T_{bp}}{(3.006 - \log p) \cdot b + 1}$$
 (Equation 1)

 T_p [K] is the temperature of the boiling point at the pressure *p* [mbar], T_{bp} [K] the boiling point under standard conditions, and *b* the solvent specific constant.

2.3 Evaporation of low-boiling solvents

2.3.1 Solvent: Acetone (≥99.8%)

System Configura	ation			
Multivapor	P-12			
Cover	PETP (black)			
Cover sealing	EPDM (black)			
Vessel type	BUCHI SpeedExtractor			
Options	Vacuum controller V-8			
	Vacuum pump V-700			
Parameters				
Solvent	Acetone Evaporated volume Category Boiling point	≥99.8% 240 ml, 20 ml/position Low-boiling 56°C		
	Desired boiling point	30°C		
Heating medium	Temperature Volume	55°C 45 ml H₂O/position		
Cooling medium (F-105)	Water/glycol Temperature	70:30% (v/v) 10°C		
(1 100)	Measured flow	1200 ml/min	Evaporation	performance
Rotational speed	Position 9		Positions	. 12
			Total volume	240 ml
Pressure gradien	t		Time	11 min
Starting point	850 mbar		Rate overall	1.3 l/h
Ramp	850-518 mbar	1 min	Rate per	
	518-361 mbar	2 min	position	109 ml/h
	361-333 mbar	2 min	pooldon	
Constant	333 mbar	6 min		
_				
	1000			

<u>S min</u>

Results

ncound	
Total process time	11 min
Solvent recovery after main condenser	235 ml (98%)
Solvent recovery after secondary	< 1 ml
condenser	

EasyVac	Detection start point	Distillation	Detection end point
Acetone	\square	\square	$\mathbf{\overline{\mathbf{A}}}$
Limitations:			
Glassware diameter < 13 mm			
Glassware diameter 13 < x < 19 mm	\square	\square	
Glassware diameter > 19 mm	\square	M	V

2.3.2 Solvent: Ethyl acetate (Analytical grade)

	System Configura	ation			
Cover sealing Vessel type FFKM (black) BUCHI SpeedExtractor tube (4953) Options Vacuum controller V-855 (firmware 3.03) Vacuum pump V-700 Parameters Solvent Ethyl acetate Evaporated volume Category Desired boiling point Category Desired boiling point Category Desired boiling point Category Desired boiling point Colong medium (F-105) Ethyl acetate Evaporated volume S5°C Volume Analytical grade S5°C Volume Cooling medium (F-105) Temperature Measured flow 55°C 1200 ml/min Position Pressure gradient Total volume 242 mbar 2 min 2 min 242 mbar Evaporation performan Positions Evaporation performan Positions Constant 140 mbar 5 min Simin Results Total process time Solvent recovery after secondary 3 min 2 min 2 min Solvent recovery after secondary 10 min 2 min 2 min	Multivapor	P-12			
Vessel type BUCHI SpeedExtractor tube (49535) Options Vacuum controller V-855 (firmware 3.03) Vacuum pump V-700 Parameters Solvent Ethyl acetate Evaporated volume 240 ml, 20 ml/position Category Boiling point Tomperature Analytical grade 240 ml, 20 ml/position Category Boiling point Tomperature First Station Cooling medium Vater/glycol First Station Cooling medium Water/glycol First Station Cooling medium Vater/glycol Evaporation before the assured flow Evaporation performan Rotational speed Position 9 Total volume 2 min 242 - 140 mbar 2 min 242 - 140 mbar Time 10 min 200 Constant 140 mbar 5 min 5 min 120 ml Results Total process time Solvent recovery after secondary 2 min 2 37 ml (98.8%) Solvent recovery after secondary 10 min 2 37 ml (98.8%)					
Options Vacuum controller V-855 (firmware 3.03) Vacuum pump V-700 Parameters Solvent Ethyl acetate Evaporated volume Category Analytical grade 240 ml, 20 ml/position Desired boiling point 30°C Heating medium (F-105) Temperature Temperature 55°C Volume Total volume 45 ml H ₂ O/position Rotational speed Position 9 Position 9 Pressure gradient Total volume 242 mbar 2 min 242 mbar Constant 140 mbar 5 min Constant 140 mbar 5 min Results Total process time Solvent recovery after main condenser Total process time Solvent recovery after secondary 10 min 237 ml (98.8%) Solvent recovery after secondary					
Vacuum pump V-700 Parameters Solvent Ethyl acetate Evaporated volume Category Boiling point Analytical grade 240 ml, 20 ml/position Low-boiling Feating medium (F-105) Temperature Volume Vater/glycol 25°C 70:30% (v/v) Temperature 10°C Measured flow 200 ml/min Rotational speed Position 9 Position 9 Pressure gradient Starting point 242:140 mbar 2 min 242:140 mbar 1 min 242:140 mbar Constant 140 mbar 5 min Total volume 200 ml/min Starting point 242 mbar 5 min Results Results Total process time Solvent recovery after main condenser 237 ml (98.8%) 237 ml (98.8%)					
Parameters Solvent Ethyl acetate Evaporated volume Category Analytical grade 240 ml, 20 ml/position Desired boiling point Trice Trice Total volume Analytical grade 240 ml, 20 ml/position Heating medium Temperature 55°C Volume 45 ml H ₂ O/position Evaporation performan Cooling medium Water/glycol 70:30% (i/v) Total volume 240 ml Rotational speed Position 9 Position 9 Positions 12 Total volume 242 mbar 2 min 242 mbar 1 min 242 mbar 2 min 242 mbar 2 min 242 mbar 2 min 242 mbar 2 min 242 mbar 2 min 242 mbar 2 min 242 mbar 2 min Constant 140 mbar 5 min 3 min Results Total process time 10 min Solvent recovery after main condenser 237 ml (98.8%) Solvent recovery after secondary	Options		55 (firmware 3.03)		
Solvent Ethyl acetate Evaporated volume Category Desired boling point Temperature (F-105) Analytical grade 240 ml, 20 ml/position 30°C Heating medium Cooling medium (F-105) Temperature Temperature 10°C Measured flow 1200 ml/min 30°C 70:30% (v/v) Temperature 10°C Measured flow 1200 ml/min Evaporation performant Positions Pressure gradient Total volume 242 mbar 2 min 242 mbar 2 min 242 mbar Constant 140 mbar 5 min Constant 140 mbar 5 min		Vacuum pump V-700		_	
Evaporated volume Category Boiling point Category Desired boiling point Temperature (F-105) 240 ml/ 20 ml/position To Coling medium (F-105) Temperature Temperature Temperature 10°C Measured flow Temperature 10°C Measured flow 1200 ml/min Fereperature Position 9 Evaporation performant Positions Pressure gradient Starting point Starting point 242 mbar 653 mbar 653 -242 mbar 2 min 2 442 mbar Total volume 2 42 mbar 240 ml 1 min 2 422-140 mbar Constant 140 mbar 5 min Rate overall 1.4 l/h Rate per position 1000 000000000000000000000000000000000	Parameters				
Heating medium (Cooling medium (F-105) Temperature Volume 55°C 45 ml H ₂ O/position Rotational speed Position 9 Position 10°C Measured flow 1200 ml/min Pressure gradient 553 mbar Rate overall 1.4 l/h Rate overall Starting point 653 mbar 2 min Rate overall 1.4 l/h Rate per Constant 140 mbar 5 min Constant 140 mbar 5 min Results Total process time 10 min Solvent recovery after main condenser 237 ml (98.8%) Solvent recovery after secondary < 1 ml	Solvent	Evaporated volume Category Boiling point	240 ml, 20 ml/position Low-boiling 77°C		
(F-105) Temperature Measured flow 10°C 1200 ml/min Rotational speed Position 9 Pressure gradient Position 2 Starting point 653 nbar 653-242 mbar 2 min 242 mbar 1 min 242 nbar 2 min Constant 140 mbar 5 min 5 min Results Total process time train condenser 10 min 237 ml (98.8%) Solvent recovery after secondary 10 min 237 ml (98.8%)	-	Temperature Volume	45 ml H ₂ O/position		
Measured flow 1200 ml/min Rotational speed Position 9 Pressure gradient Position 1 Starting point 653 mbar 2 min 242 mbar 1 min 242-140 mbar 2 min Constant 140 mbar 5 min 12 Total volume 240 ml Image: Constant 140 mbar 5 min 700 120 ml Results Total process time 10 min 201 ml 203 ml 203 ml Results Total process time 10 min 203 ml 98.8%) 203 ml 98.8%					
Rotational speed Position 9 Positions 12 Pressure gradient Total volume 240 ml Starting point 653 mbar 2 min Armon 242 mbar 1 min 242 mbar 1 min 242 mbar 242 mbar 2 min Constant 140 mbar 5 min Image: Constant 140 mbar 6 8 10 12 Image: Constant 10 min <td>(F-105)</td> <td></td> <td></td> <td>Evaporation p</td> <td>orformance</td>	(F-105)			Evaporation p	orformance
Total volume 240 ml Starting point 653 mbar 2 min Ramp 653-242 mbar 2 min Rate overall 1.4 l/h Ramp 242 mbar 1 min 242-140 mbar 2 min Rate overall 1.4 l/h Constant 140 mbar 2 min 5 min 120 ml 10 min Total volume 240 ml 0 242-140 mbar 2 min 120 ml 120 ml 0 0 2 4 6 8 10 12 0 0 2 4 6 8 10 12 14 Results Total process time 10 min 237 ml (98.8%) 237 ml (98.8%) 50/vent recovery after secondary 2 min	Rotational speed		1200 11/11/1		
Starting point 653 mbar Rate overall 1.4 l/h Ramp 242 mbar 1 min 242 mbar 2 min Constant 140 mbar 2 min 200 120 ml Operation time (min) Results Total process time 10 min Solvent recovery after main condenser 237 ml (98.8%) Solvent recovery after secondary < 1 ml					240 ml
Starting point 653 mbar Rate overall 1.4 l/h Ramp 653-242 mbar 2 min Rate overall 1.4 l/h Ramp 242 mbar 1 min 242-140 mbar 2 min Constant 140 mbar 5 min 120 ml Image: Constant 140 mbar 12 ml 120 ml Image: Constant 140 mbar 140 ml 140 ml Image: Constant 140 mbar 12 ml 120 ml Image: Constant 140 mbar 10 ml 120 ml Image: Constant 10 min 10 ml 120 ml	Pressure gradien	t		Time	10 min
Ramp 653-242 mbar 2 min 242 mbar 1 min 242-140 mbar 2 min Rate per position Constant 140 mbar 5 min Image: Constant 140 mbar 5 min 5 min Results Total process time 10 min Solvent recovery after main condenser 237 ml (98.8%) Solvent recovery after secondary < 1 ml	-			Rate overall	1.4 l/h
242-140 mbar 2 min Constant 140 mbar 5 min Image: Constant of the second and the second a		653-242 mbar		Rate per	
Results Total process time 10 min Solvent recovery after main condenser 237 ml (98.8%) Solvent recovery after secondary < 1 ml				position	120 111/11
Results Total process time 10 min Solvent recovery after main condenser 237 ml (98.8%) Solvent recovery after secondary < 1 ml	Ormationt	4.40 mb an	E min		
Results Total process time 10 min Solvent recovery after main condenser 237 ml (98.8%) Solvent recovery after secondary < 1 ml	Constant	140 mbar	5 min		
Total process time10 minSolvent recovery after main condenser237 ml (98.8%)Solvent recovery after secondary< 1 ml	Lashin Disson	600 500 400 200 100 0 2 4 6			
Solvent recovery after main condenser237 ml (98.8%)Solvent recovery after secondary< 1 ml					
Solvent recovery after secondary < 1 ml					

EasyVac	Detection start		Detection
	point	Distillation	end point
Ethyl acetate	$\mathbf{\overline{\mathbf{A}}}$	\square	\square
Limitations:			
Glassware diameter < 13 mm			
Glassware diameter 13 < x < 19 mm	\checkmark	\checkmark	
Glassware diameter > 19 mm	$\mathbf{\overline{\mathbf{A}}}$	\square	\square

2.3.3 Solvent: *n*-Hexane (purum ≥95.0%)

System Configura	ation			
Multivapor	P-12			
Cover	PETP (black)			
Cover sealing	FKM (green)			
Vessel type	BUCHI SpeedExtractor			
Options	Vacuum controller V-85	55 (firmware 3.03)		
	Vacuum pump V-700		_	
Parameters				
Solvent	n-Hexane	Purum ≥95.0%		
	Evaporated volume	360 ml, 30 ml/position		
	Category	Low-boiling		
	Boiling point	69°C		
	Desired boiling point	30°C		
Heating medium	Temperature	55°C		
Cooling medium	Volume Water/glycol	45 ml H ₂ O/position 70:30% (v/v)		
(F-105)	Temperature	10°C		
(1-103)	Measured flow	1200 ml/min	Evaporation pe	erformance
Rotational speed	Position 9	1200 110/1111	Positions	12
			Total volume	1∠ 360 ml
Pressure gradien	t		Time	10 min
Starting point	741 mbar		Rate overall	2.2 l/h
Ramp	741-291 mbar	2 min	Rate per	
	291-237 mbar	2 min	· · · · · · · · · · · · · · · · · · ·	180 ml/h
	237-230 mbar	2 min	position	
	230-202 mbar	3 min		
Constant	202 mbar	1 min		
Pressure [mharl	0			

Results	
Total process time	10 min
Solvent recovery after main condenser	360 ml (100%)
Solvent recovery after secondary	< 1 ml
condenser	

EasyVac	Detection start point	Distillation	Detection end point
<i>n</i> -Hexane		$\mathbf{\overline{A}}$	\checkmark
Limitations:			
Glassware diameter < 13 mm			
Glassware diameter 13 < x < 19 mm	\checkmark	\checkmark	
Glassware diameter > 19 mm	\square	\square	

2.3.4 Solvent: *n*-Hexane – P-6 (purum ≥95.0%)

System Configu	ration			
Multivapor	P-6			
Cover	PETP (black)			
Cover sealing	FKM (green)			
Vessel type	BUCHI SpeedExtractor			
Options	Vacuum controller V-85	55 (firmware 3.03)		
	Vacuum pump V-700			
Parameters				
Solvent	<i>n</i> -Hexane	Purum ≥95.0%		
	Evaporated volume	600 ml, 100 ml/position		
	Category	Low-boiling		
	Boiling point	69°C		
	Desired boiling point	30°C		
Heating medium	Temperature	55°C		
	Volume	145 ml H_2O /position		
Cooling medium (F-105)	Water/glycol Temperature	70:30% (v/v) 10°C		
(F-105)	Measured flow	1200 ml/min	Evaporation p	erformance
Rotational speed			Positions	6
			Total volume	600 ml
Pressure gradie	nt		Time	14 min
_	741 mbar		Rate overall	2.6 l/h
Starting point Ramp	741 mbar 741-308 mbar	2 min		2.0 1/11
ιταπρ	308-241 mbar	2 min	Rate per	429 ml/h
	241 mbar	3 min	position	425 111/11
	241-213 mbar	1 min		
Constant	213 mbar	6 min		
	800 -			
	F ⁷⁰⁰			
	Lengua 200			
	e 400			
	300			
	e 200			
		10 15		
	Evaporation time	[min]		
L				

Total process time	14 min
Solvent recovery after main condenser	583 ml (97.2%)
Solvent recovery after secondary	2 ml
condenser	

EasyVac	Detection		
	start		Detection
	point	Distillation	end point
<i>n</i> -Hexane	\square	(☑)	Too early

Evaporation of medium-boiling solvents 2.4

2.4.1	Solvent: X	ylene (Mixture of isc	omers, purum ≥97.0%)	
-------	------------	---------	----------------	----------------------	--

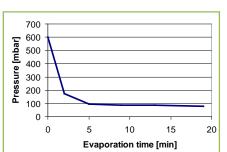
	ition					
Multivapor	P-12					
Cover	PETP (black)					
Cover sealing	FKM (green)					
Vessel type	BUCHI SpeedExtrac	tor tube (49535	5)			
Options	Vacuum controller V-					
	Vacuum pump V-700)				
	Woulff flask (48857)					
Parameters						
Solvent	Xylene	Purum ≥9	7 0º/ (icor	more)		
Solveni		240 ml, 20				
	Evaporated volume	Medium-b		UII		
	Category	139°C	oning			
	Boiling point					
L la attinar un a divun	Desired boiling point	50°C				
Heating medium	Temperature	80°C	\/= = = :+! = :			
Caaling and l	Volume	45 ml H ₂ C				
Cooling medium	Water/glycol	70:30% (v	//V)			
(F-105)	Temperature	10°C			F orman and the second	
	Measured flow	1200 ml/m	าเท		Evaporation p	erformance
Rotational speed	Position 9				Positions	12
					Total volume	240 ml
Pressure gradient	t				Time	7 min
Starting point	200 mbar				Rate overall	2.1 l/h
Ramp	200-30 mbar	3 min			Rate per	474 10
					position	171 ml/h
Constant	30 mbar	4 min				
Constant	30 mbar 250 150 100 50 0 2 4 Evaporation ti	4 min				
Results	250 200 150 50 0 2 4 Evaporation ti	 6 8 me [min]				
Results Total process time	250 200 150 50 0 2 4 Evaporation ti	6 8 me [min] 7 min				
Results Total process time Solvent recovery a	250 150 100 50 0 2 4 Evaporation ti fter main condenser	6 8 me [min] 7 min 187 ml (77.9%)			
Results Total process time Solvent recovery a Solvent recovery in	250 150 100 50 0 2 4 Evaporation ti fter main condenser Woulff flask	6 8 me [min] 7 min 187 ml (77.9% 52 ml (21.7%))			
Results Total process time Solvent recovery a Solvent recovery a Solvent recovery a	250 150 100 50 0 2 4 Evaporation ti fter main condenser Woulff flask	6 8 me [min] 7 min 187 ml (77.9%)			
Results Total process time Solvent recovery a Solvent recovery in	250 150 100 50 0 2 4 Evaporation ti fter main condenser Woulff flask	6 8 me [min] 7 min 187 ml (77.9% 52 ml (21.7%))			
Results Total process time Solvent recovery an Solvent recovery an Solvent recovery an condenser	250 150 100 50 0 2 4 Evaporation ti fter main condenser Woulff flask	6 8 me [min] 7 min 187 ml (77.9% 52 ml (21.7%))			
Results Total process time Solvent recovery a Solvent recovery a Solvent recovery a	250 150 100 50 0 2 4 Evaporation ti fter main condenser Woulff flask	7 min 187 ml (77.9% 52 ml (21.7%) 1 ml)	Detection		
Results Total process time Solvent recovery an Solvent recovery an Solvent recovery an condenser	250 150 100 50 0 2 4 Evaporation ti fter main condenser Woulff flask	7 min 187 ml (77.9% 52 ml (21.7%) 1 ml Detection start) stillation	Detection end point		

Evaporation of high-boiling solvents 2.5

Multivapor	P-12			
Cover	PETP (black)			
Cover sealing	EPDM (black)			
Vessel type	BUCHI SpeedExtractor			
Options	Vacuum controller V-85	55 (firmware 3.03)		
	Vacuum pump V-700			
Parameters				
Solvent	N,N-Dimethyl- formamide (DMF) Evaporated volume Category Boiling point Desired boiling point	Purum ≥98.0% 240 ml, 20 ml/position High-boiling 153°C 60°C		
Heating medium	Temperature Volume	80°C 45 ml H₂O/position		
Cooling medium	Water/glycol	70:30% (v/v)		
(F-105)	Temperature	20°C	Evaporation pe	erforma
	Measured flow	1200 ml/min	Positions	12
Rotational speed	Position 10		Total volume	240
			Time	25 m
Pressure gradien	t		Rate overall	0.6 l
Starting point	400 mbar		Rate per	
Ramp	400-28 mbar	2 min	position	48 m
Constant	28 mbar	23 min	_	
Γ	500 -		_	
	400 300 200 100 0			
		20 30		
	· · · ·			

Solvent: Dimethylformamide, DMF (purum, ≥98.0%) 2.5.1

Results


Total process time	25 min
Solvent recovery after main condenser	236 ml (98.3%)
Solvent recovery after secondary	1 ml
condenser	

EasyVac	Detection start point	Distillation	Detection end point
N,N-Dimethylformamide			

2.6 Evaporation of polar protic solvents

2.6.1 Solvent: Ethanol (4.8% methanol, purum, ≥99.8%)

System Configura	ation	
Multivapor	P-12	
Cover	PETP (black)	
Cover sealing	EPDM (black) / FKM (gree	en)
Vessel type	BUCHI SpeedExtractor tu	
Options	Vacuum controller V-855	(firmware 3.03)
	Vacuum pump V-700	
	PE frit (44856)	
Parameters		
Solvent	Ethanol (4.8% methanol)	Purum, ≥99.8%
	Evaporated volume	240 ml, 20 ml/position
	Category	Polar protic
	Boiling point	78°C
	Desired boiling point	30°C
Heating medium	Temperature	55°C
	Volume	45 ml H ₂ O/position
Cooling medium	Water/glycol	70:30% (v/v)
(F-105)	Temperature	10°C
	Measured flow	1200 ml/min
Rotational speed	Position 9	
Pressure gradient	t	
Starting point	602 mbar	
Ramp	602-173 mbar	2 min
	173-96 mbar	3 min
	96-86 mbar	4 min
	86 mbar	4 min
	86-78 mbar	6 min

12
240 ml
19 min
0.8 l/h
63 ml/h

Evaporation performance

Total process time	19 min
Solvent recovery after main condenser	239 ml (99.6%)
Solvent recovery after secondary	< 1 ml
condenser	

EasyVac	Detection start point	Distillation	Detection end point
Ethanol	\square	\square	\square
Limitations:			
Glassware diameter 13 < x < 19 mm	$\mathbf{\overline{\mathbf{A}}}$	\square	
Glassware diameter > 19 mm	\checkmark	\square	\square

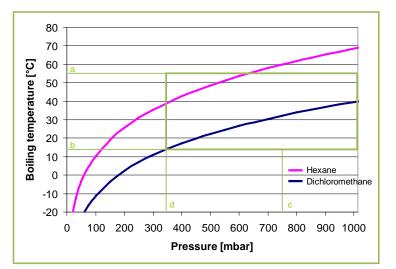
2.6.2 Solvent: Distilled water, H₂O

System Configura	tion					
Multivapor	P-12					
Cover	PETP (black)					
Cover sealing	EPDM (black) / FKN	Л (green)				
Vessel type	BUCHI SpeedExtra					
Options	Vacuum controller \	/-855 (firmwa	are 3.03)			
	Vacuum pump V-70					
	Woulff flask (48857)				
Parameters	Distillations for	DUOU		04.0		
Solvent	Distilled water		I Fontavapor			
	Evaporated volume		I, 20 ml/positi	ion		
	Category	Polar J				
	Boiling point	100°C				
	Desired boiling poin					
Heating medium	Temperature	55°C				
	Volume		H ₂ O/position			
Cooling medium	Water/glycol	70:309	% (v/v)			
(F-105)	Temperature	10°C				
	Measured flow	1200 r	nl/min		Evaporation pe	erformance
Rotational speed	Position 9				Positions	12
					Total volume	240 ml
Pressure gradient					Time	67 min
Starting point	542 mbar				Rate overall	0.2 l/h
Ramp	542-69 mbar	2 mir			Rate per	
_	69-33 mbar	3 mir			position	18 ml/h
Constant	33 mbar	57 m			position	
Constant	33-27 mbar 27 mbar	2 mir 3 mir				
Pressure [mbar]	600 500 400 300 200 100 0 20 40 Evaporation	60 time [min]	80			
Deculto						
Results		07 .		_		
Total process time	tor main sand-	67 min	00()			
	ter main condenser	235 ml (97				
Solvent recovery in		3 ml (1.3%))			
Solvent recovery at	ter secondary	2 ml				
condenser						
EasyVac		Detection		Dotootion		
		start	Distill	Detection		
		point	Distillation	end point		
Water		V				
Limitations:						
Glassware diamete	r < 13 mm					
	- 10 · · · · · 10 ·					
Glassware diamete		র্ ব				

3 Evaporation of solvent mixtures

Evaporation of the solvent mixtures hexane / dichlormethane and ethanol / water has been discussed extensively in the best@buchi 06/2001.⁷ Custom mixtures are addressed similarly. Solvent mixtures are usually distilled by evaporation of one component after the other. In the presented examples, a boiling temperature of 30 to 40°C is sought in order to protect the products.

Optimal conditions are determined in a boiling diagram. Theoretical useful pressures are determined by the heat medium temperature and the lowest possible condensation temperature. The boiling curve is calculated using Equation 1 (Section 2.2).


3.1 Hexane / dichloromethane 7:3 (e.g. flash chromatography)

The problem lies in the fact that the dichloromethane has to be distilled off at a relatively high system pressure of from 750 to 800 mbar, while hexane requires a system pressure of about 300 mbar (**Figure 10**). If dichloromethane is distilled off at too low pressure, then the condenser will soon be overburdened and solvent emissions into the environment become unavoidable.

To avoid this, dichloromethane is distilled off at an only slightly reduced pressure and then the system pressure is lowered to distill hexane. Such a lowering of pressure in stages can of course be done manually.

The monitoring time is considerable, however. Due to the fact that the boiling temperature of the hexane residue rises at a certain pressure with decreasing dichloromethane content, there is also always the danger that there could be a boiling delay if a stage is slightly too large.

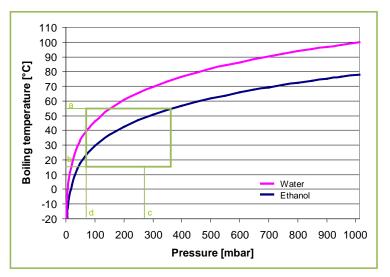
If, however, the system pressure is continuously lowered after a short starting period, i.e., along a pressure gradient, then this danger is avoided and the distillation process can be carried out without supervision or servicing.

Figure 10: Boiling diagram for dichloromethane/hexane. *a* Heat medium temperature; *b* Lowest possible condensation temperature for a cooling temperature of 10°C. The rectangle area, which is surrounded in green, marks the theoretically useful area; $c \rightarrow d$ shows the used pressure range.

⁷ A. Talamona, G. Schönenberger, Vacuum control during vaporization of problematic solutions, best@buchi no. 06/2001.

Solvent mixture: Hexane / dichloromethane 7:3

	ation			
Multivapor	P-12			
Cover	PEEK (ecru) / PETP (bl	lack)		
Cover sealing	FKM (green)			
Vessel type	BUCHI SpeedExtractor			
Options	Vacuum controller V-85	55 (firmware 3.03)		
	Vacuum pump V-700			
Parameters				
Solvent mixture	Hexane	≥96%		
	Dichloromethane	≥99.8%		
	Ratio	7:3 (v/v)		
Heating medium	Evaporated volume Temperature	240 ml, 20 ml/position 55°C		
nealing meulum	Volume	45 ml H ₂ O/position		
Cooling medium	Water/glycol	70:30% (v/v)		
(F-105)	Temperature	10°C		
(1 100)	Measured flow	1200 ml/min		
Rotational speed	Position 9		Evaporation pe	erformanc
			Positions	12
Pressure gradien	t		Total volume	240 ml
0,	760 mbar		Time	12 min
Starting point	760 mbar	3 min	Rate overall	1.2 l/h
Starting point Constant	700 mbai			
	760-350 mbar	7 min	Rate per	100 ml/
Constant			Rate per position	100 ml/

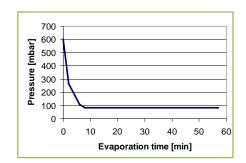

0	3	6	9	12	15
	Eva	aporatio	n time [ı	nin]	

Results	
Total process time	12 min
Solvent recovery after main condenser	237 ml (98.8%)
Solvent recovery after secondary	1 ml
condenser	

3.2 Ethanol / water 6:4 (e.g. reverse phase-chromatography)

Ethanol/water mixtures tend to bump and foam during the distillation process. If the distillation process is carried out very carefully, then the process can be almost endless. If, on the other hand, the pressure is lowered a bit too sharply, then the solution foams over and the distillation has to be started all over again! Additionally, the distillation is performed at a truly low-pressure level to achieve the desired boiling point (**Figure 11**).

In this application as well, a vacuum control system with programmable pressure gradient is very helpful and results in a significant reduction in laboratory personnel. The distillation record sheet on the next page shows how the pressure during manual operation is reduced rather tediously during the first 20 minutes of operation, always close to the limit of over-foaming, and how the problem can be elegantly solved with the use of a gradient function. True, the distillation process lasts a bit longer, but the danger of over-foaming is clearly eliminated.


Figure 11: Boiling diagram for ethanol/water. *a* Heat medium temperature; *b* Lowest possible condensation temperature for a cooling temperature of 10°C. The rectangle area, which is surrounded in green, marks the theoretically useful area; $c \rightarrow d$ shows the used pressure range.

Solvent mixture: Ethanol / water 6:4

System Configur	ation	
Multivapor	P-12	
Cover	PETP (black)	
Cover sealing	EPDM (black) / FKM (gre	en)
Vessel type	BUCHI SpeedExtractor tube (49535)	
Options	Vacuum controller V-855 (firmware 3.03)	
	Vacuum pump V-700	
Parameters		
Solvent mixture	Ethanol (absolute)	purum ≥99.8%
	Distilled water	BUCHI Fontavapor 210
	Ratio	6:4 (v/v)
	Evanorated volume	240 ml 20 ml/position

Biotinou nator	Been in ontarapor 210
Ratio	6:4 (v/v)
Evaporated volume	240 ml, 20 ml/position
Temperature	55°C
Volume	45 ml H₂O/position
Water/glycol	70:30% (v/v)
Temperature	10°C
Measured flow	1200 ml/min
Position 9	
	Ratio Evaporated volume Temperature Volume Water/glycol Temperature Measured flow

Pressure gradient			
Starting point	602 mbar		
Ramp	602-267 mbar	2 min	
	267-107 mbar	4 min	
	107-84 mbar	2 min	
Constant	84 mbar	49 min	

Evaporation performance		
Positions	12	
Total volume	240 ml	
Time	57 min	
Rate overall	0.3 l/h	
Rate per position	21 ml/h	

Results	

Total process time	57 min
Solvent recovery after main condenser	225 ml (93.8%)
Solvent recovery after secondary	4 ml
condenser	

3.3 Azeotrope chloroform / methanol 8:1 (e.g. flash chromatography)

An azeotrope a mixture of two or more liquids in such a ratio that its composition cannot be changed by simple distillation. The vapour of boiled azeotrope has the same ratio of constituents as the original mixture

Each azeotrope has a characteristic boiling point. The boiling point temperature of an azeotrope is either less than the boiling point temperatures of any of its constituents (a positive azeotrope), or greater than the boiling point temperatures of any of its constituents (a negative azeotrope). Decrease of boiling point is seen in the phase diagrams of the positive azeotrope chlororform / methanol (**Figure 12**).

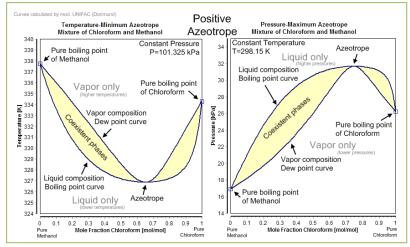
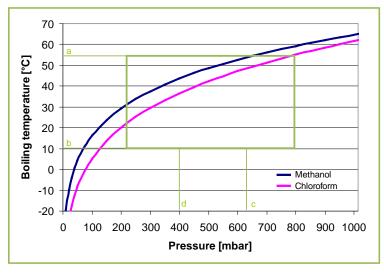


Figure 12: Phase diagrams of the positive azeotrope chlororform / methanol.⁸


If two solvents can form a positive azeotrope, then distillation of any mixture of those constituents will result in the distillate being closer in composition to the azeotrope than the starting mixture. Repeated series distillations will produce mixtures that are progressively closer to the azeotropic ratio. But you cannot concentrate above the azeotropic ratio. Distillation of a mixture above the azeotropic point, the distillate (contrary to intuition) will be poorer in higher concentrated volatile compound than the original but slightly richer than the azeotrope.

Similarly, if two solvents can form a negative azeotrope, then distillation of any mixture of those constituents will result in the residue being closer in composition to the azeotrope than the original mixture. Boiling of any negative azeotrope solution long enough will cause the solution left behind to approach the azeotropic ratio.

Non-azeotropic solvent mixtures are distilled by evaporation of one component after the other. Assuming chloroform / methanol is non-azeotropic, optimal conditions are displayed in the rectangle area of the boiling diagram (**Figure 13**). In fact, chloroform / methanol at a ratio of

⁸ Azeotrope. Wikipedia.org, the free encyclopedia. http://en.wikipedia.org/wiki/Azeotrope. Last visit: February 17th 2011.

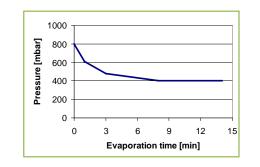

8:1 corresponding to 0.8 mol-% has a boiling point of 54°C (**Figure 12**). Therefore, distillation is performed at a higher vacuum than with non-azeotropic solvent mixtures ($c \rightarrow d$, **Figure 13**).

Figure 13: Boiling diagram for chloroform/methanol. *a* Heat medium temperature; *b* Lowest possible condensation temperature for a cooling temperature of 5°C. The rectangle area, which is surrounded in green, marks the theoretically useful area; $c \rightarrow d$ shows the used pressure range.

Solvent mixture: Chloroform / methanol 8:1

System Configura	tion		_	
Multivapor	P-12			
Cover	PEEK (ecru) / PETP (black)			
Cover sealing	FKM (green) / FFKM (bla	ack)		
Vessel type	BUCHI SpeedExtractor			
Options	Vacuum controller V-858	5 (firmware 3.03)		
	Vacuum pump V-700			
Parameters			_	
Solvent mixture	Chloroform	puriss. p.a. ≥99.8%		
	Methanol	≥99.8%		
	Ratio	8:1 (v/v)		
	Evaporated volume	240 ml, 20 ml/position		
Heating medium	Temperature	55°C		
	Volume	45 ml H_2O /position		
Cooling medium	Water/glycol	70:30% (v/v)		
(F-105)	Temperature	5°C		
Detetional anead	Measured flow Position 9	1200 ml/min	Evaporation p	orform
Rotational speed	Position 9			
			Positions	12
Pressure gradient	t		Total volume	240
Starting point	800 mbar		Time	14 m
Ramp	800-612 mbar	1 min	Rate overall	1.0 l
	612-480 mbar	2 min	Rate per	
	480-400 mbar	5 min	position	86 m
Constant	400 mbar	6 min		
Constant		U IIIII	_	

Evaporation performance		
12		
240 ml		
14 min		
1.0 l/h		
86 ml/h		

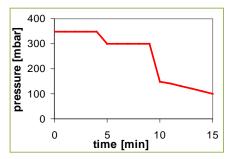
Results

Total process time	14 min
Solvent recovery after main condenser	237 ml (98.8%)
Solvent recovery after secondary	1 ml
condenser	

4 Appendix A – Reference BUCHI Application Notes

4.1 Fat Determination in Shortbread using SpeedExtractor E-916

The determination of fat in food and feed is a routine procedure for quality assurance and labeling. Fat was determined in butter shortbread after homogenization of the sample and extraction with the SpeedExtractor E-916. The total fat content was determined gravimetrically after the extract has been dried to a constant weight. The fat content of 10.21% corresponds to the value determined with classic Soxhlet.


Introduction

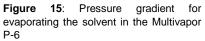

The determination of fat in food and feed is a routine procedure for in quality assurance and labeling. Fat was determined in butter shortbread after homogenization of the sample and extraction with the SpeedExtractor E-916. The solvent was evaporated in parallel using the Multivapor P-6. The total fat content was determined gravimetrically after the extract has been dried to a constant weight.

Figure 14: Shortbread

Extraction settings		
Temperature	100°C	
Pressure	100 bar	
Solvent	<i>n</i> -Hexane	
Cells	40 ml	
Vials	240 ml	
Cycles	3	
Heat-up	1 min	
Hold	5 min	
Discharge	4/3/3 min (1 st /2 nd /3 rd cycle)	
Flush with solvent	2 min	
Flush with gas	4 min	

Experimental

Instrumentation: Mixer B-400, SpeedExtractor E-916, Multivapor P-6 with Vacuum pump V-700 and Controller V-855, drying oven. The homogenized sample was mixed with quartz sand and extracted with the SpeedExtractor using the parameters shown in the adjacent table. The sample was extracted in triplicate.

The total time for the extraction is approx. 60 min and per position, approx. 50 ml solvent are used. The solvent was evaporated in parallel using the Multivapor P-6 (see **Figure 15**). The extracts were then dried to a constant weight in a drying oven (102°C) and the fat content was calculated.

Results

The determined fat content (**Table 1**) of 10.20% corresponds to the content obtained when extracting the same sample with Soxhlet extraction. With a fat content of 10.20% (rsd=0.42%, n=3) was determined.

 Table 1: Determined fat contents in short bread

Results	Fat content
Sample 1	10.25 %
Sample 2	10.14 %
Sample 3	10.24 %
Mean value	10.21 %
rsd%	0.60

References

SpeedExtractor E-916 operation manual For more detailed information refer to Application note 005/2009

4.2 Flash chromatography on cartridges for the separation of plant extracts

Flash chromatography on cartridges for the separation of plant extracts - Rules for the selection of chromatographic conditions, and comparison with MPLC

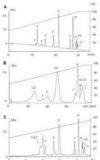
Weber P¹, Schafroth N², Hamburger M¹, Potterat O¹

¹ Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse, CH-4056 Basel, Switzerland

² Büchi Labortechnik AG, CH-9230 Flawil, Switzerland

Introduction

During the last decade, several systems for rapid preparative chromatography with pre-packed cartridges have been commercialized. Pre-packed cartridges ensure rapid separation cycles and ease of use.


separation cycles and ease of use. Flash chromotography systems were initially developed for rapid and easy purification of synthetic products, and numerous applications are documented in the experimental section of publications in synthetic chemistry. In contrast, application of such systems in the separation of complex natural product mixtures such as extracts has been nealected

The aim of this work was to explore the potential and limitations of cartridges for the In a wind that work was to explore the potential and minimums of candidges of the purification of natural product extracts. Empirical rules have been established for the determination of the separation conditions by preliminary TLC and HPLC analyses. The influence of solid introduction compared to liquid injection has been also investigated. The performance of the cartridges was compared to that of classical selfpacked MPLC glass columns for the separation of complex plant extracts of medicinal importance

Results

Correlation between HPLC and reversed phase flash chromatography

In preliminary experiments with reference compounds, a correlation was found between the capacity factors k' on the HPLC column and Sepacore cartridges $(K_{\text{Sepacore}} = 1.15 \times K_{\text{int},\text{C}}; R^2 = 0.97)$. HPLC separations can be transposed by increasing the gradient time by a factor 2-4. Theses rules have been applied to the separation of dicloromethane extracts of *Curcuma xanthorrhiza* and *Piper nigrum*.

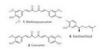
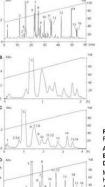



Fig 1. Separation of a DCM extract of C. xanthorrhiza on RP-18.

A) HPLC column (4 x 150 mm) B) Sepacore® cartridge 40 x 150 mm C) glass column 26 x 240 mm $_{\rm 2}$ gives sortum to x 240 mm Mobile phase: H_O (A), MeOH (B) both with 0.1% HCOH; gradient: 50 – 100% B; flow rate: A) 1m/min; B/C) 30 mL/min; D) 10m/min; samples: A) 100 μ g in 10 μ L, B/C) 500 mg in 5 mL; detection at 220 nm.

6 MR 4.5-DRyd 7 M7 ARR Poertine

Fig. 2. Separation of a DCM extract of *P. nigrum* on RP-18.

RP-18. A) HPLC column (4 x 150 mm) B/C) Sepacore® cartridge (40 x 150 mm) D) Glass column 26 x 240 mm Mobile phase: H₂O (A), MeOH (B) both with 0.1% HCOOH. Gradient: 50 – 100% B; flow rate: A) 1mU/min, B/C(3) on L/ min, D) 10mU/min, Samples: A) 100 μg in 10 μL, B/C/D) 500 mg in 5 mL; detection at 270 nm.

Transposition from TLC to flash chromatography on silica gel

In preliminary experiments, a correlation was found between $1/R_i$ and k' values (k'= 1.1 x $1/R_i$, R' = 0.90). Mobile phase compositions for starting and end point of a gradient should be selected such as to obtain R_i values of 0.15-0.2 for the most Ipophilic component and the most hydrophilic constituent, respectively. This principle has been applied to the separation of a dichloromethane extract of Salvia miltiorrhiza.

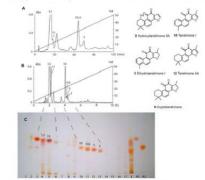


Fig. 3. Separation of a DCM extract of S. miltiorrhiza on silica gel.

r-rg. -s. osparaturun in a Com extract 01 5. *Imitorimiza* on suică geli. Al Sepacorea cartidage (40 x 150 mm), B) Glass column 26 x 240 mm. Mobile phase: A/B) n-hexane (A), EtOAc (B); gradient: 2-50% B: slow rate: A) 30 mL/min, B) 10 mL/min; sample: A) 500 mg in 10 mL *n*-hexane-EtOAc (64). B) solid introduction using a precolumn; detection at 255 nm. C) TLC analysis of the extract and the fractions obtained from B with *n*-hexane-EtOAc MeOH (25:25:1); R1: tanshinone IIA, R2: cryptotanshinone.

Influence of the mode of sample introduction

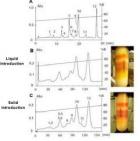


Fig. 4. Influence of the sample introduction mode on the separation of a DCM extract of *S. milthiorrhiza*.

A) HPLC column (4 x 150 mm) B/C) Sepacore® cartridge (40 x 150 mm)

BC) Sepacoree carringge (40 x 150 mm) Mobile phase: H₀ (A), MeOH (B) both with 0.1% HCOOH; gradient A) 60 – 75% B in 30 min, BC/ 60% B for 10 min, 60 – 80% B in 110 min; flow rate: A) 1 mL/min, BC/ 30 mL/mir; detection at 250 nm; sample: A) 100 µg in 10 µL, B) liquid introduction, 500 mg in 8 mL MeOH, C) solid introduction, 500 mg.

Conclusions

· Reversed phase HPLC separations can be transposed by increasing the gradient time by a factor 2-4.

For normal phase separations, solvent compositions resulting in R_r values of 0.15-0.2 on TLC for the most lipophilic and the most hydrophilic constituents, respectively, should be selected as gradient endpoints.

 Sepacore® cartridges enabled a good separation of compounds with a broad range
of polarity, as typically found in plant extracts. The chromatographic resolution
remained, however, lowever than that achieved by MPLC on columns packed with
material of smaller particle size. For poorly soluble extracts, solid introduction gave
material extracts and the second s better results than liquid injection.

 Despite lower resolution as compared to MPLC, pre-packed cartridges are an attractive alternative for the purification of extracts and crude fractions due to their ease of use and speed of separation.

Instrumentation

raphy separations were performed on pre-packed silica (12 x 150 or 40 x 150 mm, *Büchi*) at a flow rate of ges), resp. Medium pressure liquid chromatography (MF

References

The original Poster is available at: http://www.buchi.com/Applications.20162.0.html

Publication:

Weber, P., Hamburger, M., Schafroth, N., Potterat, O. 2011. Flash chromatography on cartridges for the separation of plant extracts: Rules for the selection of chromatographic conditions and comparison with medium pressure liquid chromatography. Fitoterapia 82:155–161.

5 Appendix B – Recommended Multivapor version for a specific solvent

5.1 Abbreviations

EPDM	Ethylenepropylenedimonomer	O-ring
FKM	Fluoric caoutchouc	O-ring
FFKM	Perfluoro caoutchouc	O-ring
PEEK	Polyetheretherketone	Vacuum cover and adapter
PET(P)	Polyethyletherphtalate	Vacuum cover and adapter
PFA	Perfluoroalkoxy	Vacuum hose
PTFE	Polytetrafluoroethylene	Sealing discs

5.2 Chemical resistance table

	EPDM* ⁹	FKM* ¹⁰	FKKM* ¹¹	PEEK* ⁹	PET(P)* ¹³	PFA** ¹²	PTFE** ¹²
Acetaldehyde	В	D	А	А	А	А	А
Acetic Acid	А	В	А	А	А	А	А
Acetic acid anhydride	В	D	А	А	А	А	А
Acetone	А	D	А	А	В	А	А
Benzene	D	А	А	А	А	А	А
Butanol	В	А	А	А	В	А	А
Chloroform	D	А	А	А	В	А	А
Diethyl ether	С	С	А	А	А	А	А
Dimethylformamide	А	-	А	А	В	А	А
Dimethylbenzene (Xylol)	D	A	A	A	A	A	А
Dioxane	В	-	А	А	А	А	А
Ethanol	А	А	А	А	А	А	А
Ethyl acetate	В	D	А	А	-	А	А
Hexane	С	А	А	А	А	А	А
Isobutanol	А	А	А	А	А	А	А
Isopropanol	А	А	А	А	А	А	А
Methanol	А	В	А	А	А	А	А
Methylene chloride	D	А	А	А	D	А	А
Nitrobenzene	С	В	А	В	D	А	А
Phenol	В	А	А	В	С	А	А
Propanol	А	А	А	А	А	А	А
Sulphuric acid, fuming	С	А	А	С	С	А	А
Carbon tetrachloride	D	А	А	А	А	А	А

⁹ Operation Manual, Syncore® Accessories

¹⁰ Connectors, Verbindungstechnik AG, Chem. Beständigkeitsliste

¹¹ ExpotechUSA, www.expotechusa.com

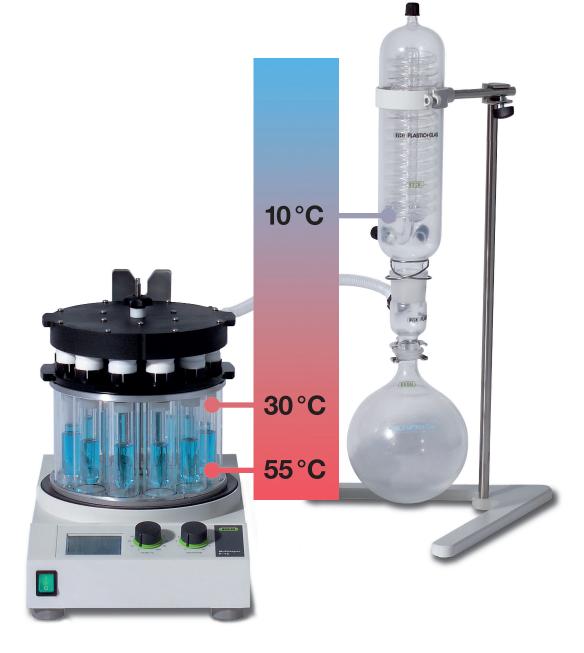
¹² Semadeni, Chemical resistance table for polymers, www.semadeni.com

¹³ Prelon GmbH Dichtungstechnik, Chem. Beständigkeit von Kunststoffen, www.prelon.de

	EPDM	FKM	FKKM	PEEK	PET(P)	PFA	PTFE
		I INN			F L 1(F)	FI A	FILE
Tetrahydrofurane	В	D	А	А	А	А	А
Toluene	D	А	А	А	А	А	А
Triethylamine	С	А	А	А	-	-	-
Trichloroethane	D	А	А	А	А	-	-
Trichloroacetic acid	В	-	-	А	-	А	А
Vinylidene chloride	D	-	А	А	В	-	-
Aq. HBr, sat.	В	А	А	С	-	А	А
Aq. HCl, sat.	А	А	А	В	А	А	А
Aq. ammonia solution	А	D	А	А	А	А	А
Aqueous caustic soda	А	В	А	А	В	А	А
Aqueous nitric acid	В	А	А	В	В	А	А

*A: Very good resistance, B: Moderate resistance, C: poor resistance, D: very poor resistance

** A: Very good resistance, B: Moderate resistance, C: poor resistance


Please note: The resistance against the corresponding vapors is significantly better. Tabled values may vary by changing temperature and pressure.

For optimal distillation consider the BUCHI rule

For evaporation at 30 °C (boiling point)

- 1. instrument setting: 55 °C
- 2. cooling medium: 10 °C, 500 ml/min
- 3. recommended rotation setting: position 8-9
- 4. vacuum setting according to the Solvent List column 30 °C

Solvent List

6	B	l	j	C		i		P		
5	w	÷Τ	z	ER	L.	A	N	D	/	

Solvent	Formula	Vacuum [mbar] for bp at:			
	0110	30°C	50°C		
Acetic acid	$C_2H_4O_2$	26	72		
Acetone	C ₃ H ₆ O	370	815		
Acetonitrile	C_2H_3N	134	315		
n-Amylalcohol, n-Pentanol	C ₅ H ₁₂ O	6	20		
<i>n</i> -Butanol	$C_4 H_{10}$	14	44		
<i>tert-</i> Butanol	$C_4H_{10}O$	78	231		
Chlorobenzene	C_6H_5CI	22	56		
Chloroform	CHCl ₃	306	665		
Cyclohexane	$C_{6}H_{12}$	154	347		
1,2-Dichloroethane	$C_2H_4CI_2$	137	315		
Dichloromethane	CH_2CI_2	685	atm. press.		
Diethylether	$C_4H_{10}O$	838	atm. press.		
trans-1,2-Dichloroethylene	C ₂ H ₂ Cl ₂	317	705		
Diisopropylether	$C_6H_{14}O$	251	545		
Dioxane	$C_4H_8O_2$	68	165		
Dimethylformamide (DMF)	C ₃ H ₇ NO	6	17		
Ethanol	C_2H_6O	97	276		
Ethylacetate	$C_4H_8O_2$	153	366		
Heptane	C_7H_{16}	77	183		
Hexane	$C_{6}H_{14}$	241	525		
Isopropylalcohol	C ₃ H ₈ O	78	231		
Isoamylalcohol	C ₅ H ₁₂ O	9	29		
Methyl <i>tert-</i> buthyl ether (MTBE)	C ₅ H ₁₂ O	413	835		
Methyl ethyl ketone (MEK)	C ₄ H ₈ O	160	359		
Methanol	CH₄O	236	607		
Pentane	$C_{5}H_{12}$	819	atm. press.		
<i>n</i> -Propanol	C ₃ H ₈ O	37	115		
Pentachloroethane	C ₂ HCl ₅	8	21		
Tetrachloromethane		179	398		
Tetrahydrofurane (THF)	C_4H_8O	234	539		
Toluene	C ₇ H ₈	48	118		
Trichloroethylene	C ₂ HCl ₃	119	275		
Water	H ₂ O	42	120		
Xylene	$C_{8}^{2}H_{10}$	15	40		

We are represented by more than 100 distribution partners worldwide. Find your local representative at

BÜCHI Labortechnik AG

CH – 9230 Flawil 1 T +41 71 394 63 63 F +41 71 394 65 65 buchi@buchi.com www.buchi.com

We are represented by more than 100 distribution partners worldwide. Find your local representative at

www.buchi.com

