

Imprint

Product Identification: Operation Manual, NIRCal 5.6 11593921B en

Publication date: 08.2016

BÜCHI Labortechnik AG Meierseggstrasse 40 Postfach CH-9230 Flawil 1

E-Mail: <u>quality@buchi.com</u>

BUCHI reserves the right to make changes to the manual as deemed necessary in the interest of experience; especially in respect to structure, illustrations and technical depth.

This manual is copyright. Information from it may not be reproduced, distributed, or used for competitive purposes, nor made available to third parties. The manufacture of any component with the aid of this manual without prior written agreement is also prohibited.

Table of Contents

1	Introdu 1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10 1.2.11 1.2.12 1.2.13	Introduction to NIR Spectroscopy Chemometrics Cluster calibration Quantitative calibration Introduction to NIRCal General Starting NIRCal NIRCal Project Spectra Overview Properties Overview Calibration Validation Methods Calibration Methods Calibrations Overview Matrices Overview Data Selections Graphics Protocols	10 10 10 11 12 14 18 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20
2	Tutoria	lis31	23
	2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9 2.1.10 2.1.10 2.1.11 2.1.12 2.1.13 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 2.2.10 2.2.11 2.2.21 2.2.13	Qualitative Qualitative Tutorial Flow Chart Qualitative Selecting the Calibration Method Selecting the Calibration Mavelengths Selecting the Calibration Wavelengths Selecting the Calibration Properties Applying Data Pretreatments Performing a calibration (calculation) Primary Principal Components Secondary Principal Components Judging the Calibration Save Calibration - Lifecycle SIMCA Quantitative Quantitative Tutorial Flow Chart Selecting the Calibration Method Selecting the Calibration Method Selecting the Calibration Wavelengths Selecting the Calibration Properties Applying Data Pretreatments Performing a calibration (calculation) Primary Principal Components Judging the Calibration Save Calibration - Lifecycle Create a Quantitative Calibration with Cross Validation	31 31 32 32 33 33 33 33 33 33 33 34 34 34 34 34 34
3	Chemo 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Calibration Methods Principal Component Analysis: PCA Cluster: CLU SIMCA Transform Cluster to SIMCA Multiple Linear Regression: MLR	41 41 46 49 50 53

216		E A
3.1.0	Principal Component Regression: PCR	54
3.1.7	Partial Least Squares Regression: PLS	54
3.2	Calibration Validation Methods	55
321	Validation Set (VS)	55
222	C_{rade} (olidation (C)()	55
J.Z.Z	Cross validation (CV)	55
3.3	Selections	69
3.3.1	Calibration Method Selection	69
3.3.2	Validation Method Selection	70
333	Data Sets	70
334	Edit Data Sata Dialog	71
2.2.4		71
3.3.5	Spectra Data Set	12
3.3.6	Wavelength Data Set	78
3.3.7	Properties Data Set	82
3.3.8	PC Data Set	85
34	Calibration Wizard	86
3/1	Calibration Wizard	86
2.4.1		80
3.0	Pretreatments	09
3.5.1	Pretreatments	89
3.5.2	Available Pretreatments	91
3.5.3	Normalization	92
3.5.4	Offset	100
355	Smoothing	105
356	Derivatives	107
3.3.0		107
3.5.7	Iransformation	113
3.5.8	Filter	118
3.6	Primary PCs	120
3.7	Adjusting Primary PCs (Calculation Parameters)	123
3.8	Secondary PCs	124
381	Secondary PCs for qualitative Calibration	124
202	Secondary PCs for quantitative Calibration	127
3.0.2	Secondary PCs for quantitative Calibration	127
3.9	Secondary PC Selection	129
3.9.1	Secondary PC Selection using NIR-Explorer	129
3.9.2	Secondary PC Selection using Edit Data Sets Dialog	130
3.10	PCs (Factor Selection Wizard)	131
3.11	Blow Lin Limits	131
3 1 1 1	Blow Up Limits quantitative calibration	131
2 1 1 2	Diew Up limits qualitative calibration	101
3.11.2	Blow Op Infilis qualitative calibration	132
3.12	Outlier Detection	133
3.13	Q-Value	136
3.14	Change X-Unit Wavelength / Wavenumber	136
3.15	Convert and Import spectra from other instruments to DB	136
3 15 1	Procedure of Spectra Import	137
3 15 2	Procedure of Spectra Conversion:	137
0.10.Z	Evolution of the Spectre Converter	137
3.15.3	Explanation of the Spectra Converter	139
3.16	Calibration Handling	140
3.16.1	Calibrations without Lifecycle	141
3.16.2	Calibrations with Lifecycle	141
3.16.3	Project Handling	145
3 17	Protocols	145
3 17 1	Calibration Protocol Auglitative	140
0.17.1		143
3.17.2		152
3.17.3	Calibration Protocol Quantitative CV	157
3.17.4	Prediction Protocol	162
3.18	Matrices	168
3.18.1	How to display matrices	168
3.18.2	Calibration Residual Limits	169
3 18 3	Calibration Residual Limits with Rlow Lin	160
2 10 4	Calibration Reara Limite	103
3.10.4		170
3.18.5	Cluster per Property	170
3.18.6	Consistency	170
3.18.7	Correlation Spectra	171
3.18.8	Correlation Wavelength	171

3.18.9	Creator	171
3.18.10	CV C-Set PRESS	172
3.18.11	CV Group Index	172
3.18.12	CV Leverages	172
3.18.13	CV Predicted Property	172
3.18.14	CV Property Residuum	173
3.18.15	CV Regression Coefficients[1]	173
3.18.16	CV Regression Coefficients[1] Mean	173
3.18.17	CV Regression Coefficients[1] Sdev	173
3.18.18	CV Regression Coefficients[1] t-test	174
3.18.19	CV Regression Coefficients[1] Variance to final Calib	174
3 18 20		175
3 18 21	CV Spectra Residuals	175
3 18 22		175
3 18 23		175
3 18 24		176
3 18 25	C-Set Maan Dranarty	176
2 19 26	C-Set Mean Property	170
2 10 27		170
2 10 20		170
3.10.20	C-Set Property Dependencies	1//
3.18.29	C-Set Regression Coefficient	177
3.18.30	C-Set Regression Intercept	178
3.18.31	C-Set Regression Slope	178
3.18.32	C-Set SEE (SEC)	1/8
3.18.33	C-Set Spectra Residuum Limits	1/9
3.18.34	C-Set Spectra Residuum Max	179
3.18.35	C-Set Spectra Residuum Min	180
3.18.36	C-Set Spectra Residuum MinMax	180
3.18.37	C-Set Std Orig Property	180
3.18.38	C-Set Std Pred Property	180
3.18.39	C-Set X-PRESS	180
3.18.40	Durbin-Watson Factor Statistics	181
3.18.41	Eigenvalue	182
3.18.42	Instrument	183
3.18.43	Leverages	183
3.18.44	Loadings or Principal Components	183
3.18.45	Original Property	184
3.18.46	Original Spectra	185
3.18.47	PCs or Factor	185
3.18.48	PCR B-Matrix	186
3.18.49	Predicted Property	186
3.18.50	Pretreated Property	187
3 18 51	Pretreated Spectra	187
3 18 52	Property	188
3 18 53	Property Adjacency	188
3 18 54	Property Box Center	189
3 18 55	Property Box Center Uniformity	189
3 18 56	Property Box Center Onitornity	180
2 19 57	Property Dux Rauli Droporty E Toot booleword	190
2 1 9 5 9	Property F-Test backward	109
2 10 50	Property F-Test forward	190
3.10.09	Property Interference	190
3.10.00	Property missing values	190
3.10.01	Property Nearest Neighbor	190
3.10.02	Property Residuum	191
3.18.63	Property Score Diffusion	191
3.18.64	Property Score Disorder	192
3.18.65	Property Score Extension	192
3.18.66	Property Wavelength Regression	192
3.18.67	Quant Calib. Statistics	192
3.18.68	Q-Values	193
3.18.69	Real time	194
3.18.70	Reconstructed Spectra	195

3.18.71 Residuals	195
	105
3.10.72 Regression Coefficients [1]	195
3.18.73 Regression Coefficients / Property Spectra (CLU)	195
3.18.74 Sample	196
3.18.75 Sector	106
	100
3.18.76 Score Adjacency	198
3.18.77 SEP Generalized Cross Validation	198
3 18 78 Spectra	198
	100
3.16.79 Spectra Property Index	199
3.18.80 Spectra Radii	199
3.18.81 Spectra Residuals	200
3 18 82 Spectra Posiduals too big	200
	200
3. 10.03 Spectra Residuum	200
3.18.84 Spectrum Nearest Neighbor	201
3.18.85 Spectrum Nearest Neighbor Index	202
	202
	202
3.18.87 V-Set BCAP-PRES	202
3.18.88 V-Set BIAS	203
3.18.89 V-Set PRESS	203
2.19.00 V Set Represeion Coefficient	204
3.10.90 V-Set Regression Coefficient	204
3.18.91 V-Set Regression Intercept	205
3.18.92 V-Set Regression Slope	205
3 18 93 V-Set SEE (SEP)	205
	206
3.16.94 V-Set Spectra Residuum Max	200
3.18.95 V-Set Spectra Residuum Min	206
3.18.96 V-Set Std Orig Property	206
3 18 97 V-Set Std Pred Property	207
	207
3.18.98 V-Set X-PRESS	207
3.18.99 Wavenumber	207
3.18.100 X-PRESS	207
3 18 101 × Secret	208
	200
3.18.102 y-loadings	208
3.19 NIRCal Configuration Options	209
3.19.1 Configuration Dialog	209
3 19 2 General	209
	210
3.19.5 Journal	210
3.19.4 Calibration Defaults	212
3.19.5 Tables	213
3 19 6 2D-Plots	213
	210
3.19.7 3D-Plots	215
3.19.8 System Modules	217
3.19.9 Calibration Protocols	217
3 19 10 Directories	218
2.10.11 Cluster Director Director and	210
3.19.11 Cluster Prediction Protocol	219
3.20 Menu commands	220
3.20.1 File menu	220
3 20 2 Edit menu	220
	223
3.20.3 View menu	230
3.20.4 Workspace	241
3.20.5 Project	242
	245
	240
3.20.7 Wizard	247
3.20.8 Modules	248
3.20.9 Windows	253
2 20 10 Holp	200
	254
3.21 Context menu (right mouse)	255
3.21.1 Add Selection to Set	255
3 21 2 Alpha-Blending	255
	200
3.21.3 Anu-Aliashiy	200
3.21.4 Autorotate	255
3.21.5 Choose [x][y] Independent	256
3 21 6 Choose [xv] Independent	256
	200

3.21.7	Clear Selection	256
3.21.8	Colors	256
3.21.9	Copy Plot to Clipboard	256
3.21.10	Copy Selection To	256
3.21.11	Edit Selection	257
3.21.12	Export Table	257
3.21.13	Fix Table Titles	257
3.21.14	Flip X-Axis	257
3.21.15	Flip Y-Axis	257
3.21.16	Invert Selection	257
3.21.17	Load Selection from Set	257
3.21.18	Large Plots	257
3.21.19	Mouse Select	201
3.21.20	Mouse Select Lasso	201
3 21 22	Mouse X-Axis Select	250
3 21 23	Number format	258
3 21 24	Open data as	258
3.21.25	Plot Defaults	259
3.21.26	Plot Settings	259
3.21.27	Regression Draw Line	259
3.21.28	Regression Copy Equation	259
3.21.29	Remove Selection from	259
3.21.30	Snap to Y-Grid	259
3.21.31	Snap to X-Grid	259
3.21.32	Show Plane	260
3.21.33	Show Labels	260
3.21.34	Show Line	260
3.21.35	Show Selection Colors	260
3.21.36	Show Cycle Colors	260
3.21.37	Show Property Colors	260
3.21.38	Transpose Data	260
3.21.39	Turbo Mode	260
3.21.40	Undo Last Pretreatment	260
3.21.41	View Fit	200
3.21.42	VIEW FIL Visibility	201
3.21.43	Visibility	261
3 22 1	Calibration Toolbar	261
3 22 2	Database Toolbar	262
3.22.3	File & Edit Toolbar	262
3.22.4	Lifecycle	263
3.22.5	Modules	263
3.22.6	Options Toolbar	263
3.22.7	Pretreatments Toolbar	263
3.22.8	Pretreatments Advanced Toolbar	264
3.22.9	Pretreatments Minibar Toolbar	264
3.22.10	Pretreatments Gap2	265
3.22.11	Project Toolbar	265
3.22.12	Search Import Export Toolbar	266
3.22.13	Window I oolbar	266
3.22.14	vvizard i ooldar	266
3.22.15	vvizaru vvorkspace	266
3.22.16		201
Append	ix	269
4.1	Keyboard Shortcuts	269
4.2	Tips and Tricks	270
4.3	Conventions / Terminology	273
4.3.1	Temporary Settings	274
4.3.2	Permanent Settings	274

4

	4.4	Characteristic absorbance table	274
5	Softwa	are installation	277
	5.1	Software installation	277
	5.1.1	Important Notes	277
	5.1.2	System requirements	277
	5.1.3	Other requirements	277
	5.1.4	Installation procedure	277
	5.2	Software update	281
	5.3	Software licenses	281
	5.3.1	Software Registration	281
	5.3.2	Activating the License	283

Welcome

Dear NIRCal user,

NIRCal is recognized as a reliable, comprehensive but also easy to use chemometric software package. It offers a wide variety of tools for method development and optimization.

The NIR spectroscopic technology and the range of applications develops continuously, just as new requirements from users and regulatory authorities. NIRCal is designed to fulfill those requirements today and in the future.

NIR spectroscopy is a powerful technology, which gives insight in product development projects and sound process understanding enabling optimization of processes and quality. NIRCal is designed to support all those tasks. Through high quality plots and informative workspaces, the analyst gets comprehensive overview of the system under study.

Much of the power in multivariate methods like PCA and PLS lies in the information one can get from interpretation of the models. This manual not only describes the functionality of NIRCal but teaches the user how to interpret the models to ensure the maximum return on your investment in NIR technology.

Should you come across any feature which needs improvement or extension, please do not hesitate to contact us. Your feedback helps us to continuously improve our software and is highly appreciated. Please send an e-mail to: info@buchi.com.

Every effort has been made at BUCHI to ensure that the information in this documentation is correct. BÜCHI Labortechnik AG accepts no responsibility for errors or omissions.

Information in this document is subject to change without notice and does not represent a commitment on the part of BÜCHI Labortechnik AG.

The software and/or files may be used or copied only in accordance with the terms of the license agreement.

BÜCHI Labortechnik AG, CH-9230 Flawil, Switzerland, March 2013.

Explanation of the used safety notes:

NOTE

Information on technical requirements. Non-compliance can lead to faults, inefficiency and production losses.

This manual is stored under: C:\Program Files\Buchi\NIRSolutions\NIRCal Manual.pdf"

1 Introduction

1.1 Introduction to NIR

1.1.1 Spectroscopy

Light is a fast time dependent sequence of electric and magnetic fields propagating in space. Light can be characterised with physical properties, like:

frequency:	$v, w = 2\pi v$
wavelength:	λ
wavenumber:	k= 1/λ
velocity of propagation:	c=λν
energy:	E=h•v (h=6.63*10 ⁻³⁴ Js)

A summary of the electromagnetic spectrum can be seen in the Picture below. NIR lies between the visible and middle infrared range. With this light, the molecular vibrations are activated, similar to the infrared range.

Most of the molecule vibrations take place at a characteristic frequency which lies between 10^{12} to 10^{14} Hz. The osculating molecule interacts with the electrical field or light when the frequencies are the same.

$D_{char} = D_{light} = 10^{12} - 10^{14}$	Hz Infrared Light
--	-------------------

Not only are the basic vibrations absorbed with very high degree of excitation in the infrared range, but also frequencies 2 or 3 times higher. The harmonic frequencies are absorbed with a lower degree of excitation and lie in the near infrared range.

Using an infrared spectrum, the characterisations of molecules is possible. In the NIR spectra region mainly the overtones and combination tones of -CH, -OH and -NH groups are absorbed, so **NIR is suitable mainly for organic substances**.

The absorption bands are very broad and they often overlap, which can cause problems by direct interpretation of the spectra. The most often used evaluation method in spectroscopy, the Lambert-

Beer Law:

 $A = \log 1/T = c \cdot d \cdot \varepsilon$

has just limited validity in the NIR spectroscopy. The application of chemometrics for the evaluation of NIR spectra is a must.

Advantages of NIR spectroscopy

The relative low degree of absorption coefficient of overtones and combination vibrations causes a low degree of absorbance in the NIR region. Solids have a high degree of reflected light and liquids can be measured for path lengths of several mm.

□ **no sample preparation is** necessary.

The materials for the optics can be quartz, glass or sapphire, which are

cheap and robust.

1.1.2 Chemometrics

NIR spectra are generally characterised by **very broad peaks** and a multitude of oscillation superpositions. Visual evaluation is therefore all but impossible.

Differences in the spectra of similar substances often consist merely of a slight shift or small change in shape of the wide absorption bands. For this reason, NIR spectra are basically evaluated with the aid of mathematical methods, which is why such significance is attached to the chemometric software. **Chemometric** is the application of **mathematical, statistical** procedures for processing, evaluating and interpreting **large amounts of chemical data** (e.g. NIR spectra). The function of the chemometric software in NIR spectroscopy is to find a statistical correlation between the spectral data and the known (e.g. by laboratory analysis) property values of the samples used for the calibration.

If this **correlation is systematic**, it is possible to **predict** desired **parameters** of unknown samples (e.g. identity, quality, quantity) by recording the spectrum and subsequent evaluation by calculation.

The Büchi NIR spectrometer systems allow **several hundred intensity values** (reflectance / transmittance) of the measured NIR spectral region to be included in the calibration. In order to be able to draw maximum benefit from the measured region, the **Principal Component Analysis** (PCA) is applied.

The Principal Component Analysis for qualitative calibration allows the identification of different substances or similar product qualities. There are 2 ways to use PCA:

- Cluster calibrations and the
- SIMCA method

For quantitative analyses, three different calculation procedures have been implemented:

- □ Multiple Linear Regression (MLR),
- □ Pricipal Component Regression (PCR) and
- □ Partial Least Squares Regression (PLS).

These methods can be tested with a user made selection of **independent** <u>validation samples</u> or by using each sample for the calibration in <u>cross validation</u>.

Chemometrics is the science of relating measurements made on a chemical system or process to the state of the system via application of mathematical or statistical methods. [International Chemometrics Society (ICS)]

1.1.3 Cluster calibration

Qualitative calibrations are used for identification of different chemical substances and for separation of different qualities of the same substances. The possible applications include identification of:

- □ substances with very different chemical characteristics;
- □ chemically similar substances;
- acceptable and rejectable qualities of a given substance.

The possible methods are Cluster or SIMCA. Both methods use PCA with the difference that Cluster method is always used for a group of similar substances, while for each substance a calculation is performed with SIMCA.

Choosing the Calibration Samples

Verifying substances in the laboratory often means, ascertaining if a sample can be assigned to a specific category (property); e.g., when checking incoming raw materials in a pharmaceutical company to see if the incoming raw material is the product that was expected or not. The question can be answered efficiently by recording an NIR-spectrum of the raw material and analyzing the spectrum with a qualitative calibration. The raw material can be correctly identified that it belongs to the expected category or falsely identified that it does not belong to the expected category.

To obtain a useful, qualitative calibration, first, calibration samples should be measured that **cover all expected allowable variations** of the quality of the product. For each property, several samples must be collected to cover variations such as different particle size, temperature, moisture or supplier. To obtain a representative set of spectra, we recommend measuring samples from at least **five to fifteen different batches** of each product that have been collected **over a period** of at least 6 months. This will ensure that all variations within a product will be represented in a calibration. Collecting samples can speed up the building of a proper calibration. But only stable and unchanged substances can be used.

Only **samples that have been tested with reference analysis** should be used for the calibration. The combinations will be chosen randomly or with an adequate experimental design. Two thirds of these samples are composed to be the basic calculation data for the calibration. The remaining third is used for testing the calibration.

NOTE

When selecting the spectra in the calibration- and validation-set, it is important to assign all spectra of one sample either to the calibration or to the validation set.

Calculating the Qualitative Calibration

The spectra of different substances show the physical and chemical characteristics of each substance. Not all spectral differences are associated with the searched differences. "False" differences arise, for example through a varying presentation of the sample because of different particle size or other noninteresting but allowable variations of the substance. Such "false" differences can be reduced or partly eliminated with the help of appropriate **data pretreatments** during the calculation.

Figure.1: Solvent spectra (acetone, ethanol, toluene and dichlor-methane), measured through glass cuvettes with measurement option liquid. The slight shifts (light scattering) are not of interest and should be reduced with data pretreatments.

Figure.2: Spectra out of figure 1 after data pretreatment (here: 1st derivation) Systematic differences of the four solvents are clear and reproducible

For the actual calibration, the **Cluster** calibration using **PCA** has been used. This means a calculation of a new illustration of the spectral information with the target to show the main differences in the data set. Spectra appear after the calculation in the new illustration as points in a 2D or 3D Plot.*

The calculation can be performed automatically by the Calibration Wizard. According to the required input by the Wizard concerning measurement method and dedicated calibration type, different calibrations are calculated and sorted by a specific quality attribute (Q-Value). For an optimal result, the wavelength selection, the data pretreatments and the optimal number of PCs must be chosen adequately. This is automatically done by the software.

Good qualitative calibrations can be recognised as the single spectra are found in well separated tolerance regions -Clusters- where each represent only one of the possible categories (properties).

Figure 3: After transformation with the PCA, the spectra appear as points assorted in clusters, which are well separated from each other.

* In case of many different categories (properties) more than three delineation axes are required to show all important differences. It is not necessarily the case, that the first three axes are the most important ones.

Inspection of the Qualitative Calibration

The attributes of a good calibration are:

- all tolerance regions of the single categories (Clusters) are cohesive;
- all tolerance regions are convex and engaged consistently;
- all calibration and validation spectra are within a valid range and assigned correctly;
- all other substance spectra can not be predicted false with a certain calibration;
- Q-Value is closest possible to 1.

Application of a qualitative calibration and interpretation of the results

During the application of a qualitative calibration, it is determined whether a new measured spectrum can be associated with a calibrated category.

A measured spectrum is identified as OK when these three criteria are fulfilled:

- □ the residual is smaller than the allowed limit;
- □ the distance is within the allowed tolerance (the spectrum is in a known cluster),
- □ the identity of the measured substance (substance-ID entry) matches the identity of a substance used to build up the calibration model.

1.1.4 Quantitative calibration

NIR Spectra can be seen as fingerprints, which are characteristic for a certain substance. When investigating a substance mixture, different fingerprints are superposed within a complex spectrum. The concentration rate of the substances is present in the spectra, but cannot be seen. Target of a quantitative calibration is, to calculate applicable filters that establish the coherence of the measured intensities and the concentrations of the single components.

The quantitative calibration serves as the determination of parameters such as **concentration** (e.g. water content, blending ratio, hydroxyl number, etc.) or **physical properties** (e.g. density, viscosity).

Choosing the calibration samples

As a basis for the calibration work a set of reference data is used for which the interesting concentrations have been determined with the referring lab method. For each component (property) at least 15 samples must be used.

Important:

For the choice of the reference samples, **all components of the mixture** (and eventually varying parameters like temperature) **must be considered**, even components not being calibrated. For complex compositions, like foodstuffs, the requested amount of samples might be quite high.

The choice of calibration samples must be carried out very carefully. Spot test samples taken from the production process might not meet the demands, because the reference values typically show small variations around a nominal value. Suitable calibration samples should whenever possible be chosen with the aid of an experimental design or specially produced. The consistent and independent distribution has to be checked in any case.

Suggestions:

Figure 1: The distribution of the reference values is checked with the help of 2D plots.

The NIR **calibration range** should cover at least 20 times the error range of the reference method. For example for H_2O determination, the range of error of $\pm 0.2\%$ leads to a minimum NIR-calibration range of 4% around an expected mean value. Otherwise the error of the reference method has a high influence on a calibration. In order to avoid extrapolation for the NIR calibration, select the calibration range slightly wider than the working range.

- □ Working range: concentration range of a parameter that usually is measured in a product;
- □ **Calibration range**: for the calibration, the concentration range must be set broader than the working range.

As a rule of thumb; **60 samples should ideally cover the calibration range homogeneously**. 2/3 of all samples are used for calibration, 1/3 of all samples are used for validation. Spectra of the same sample must remain together and be put either in the calibration set or the validation set. For the calibration set it is recommended to use at least 10 samples per parameter to be determined.

Spectra with the minimum and maximum concentration values (extreme values) must always be selected as calibration spectra.

An incorrect distribution of the samples with two separated concentration ranges should be avoided. Either an independent calibration should be generated for each range or additional samples, covering the missing range, should be measured.

For reference measurement, the probe and reference material need to be absolutely clean. This is valid for the measurement of calibration spectra as well as for the measurement of application spectra. The measuring option and measurement conditions should be identical for generation of both, the calibration and routine application use. For quantitative measurements, the fibre optics probe should be in a fixed position.

The samples should not be measured with increasing or decreasing concentrations, but randomly distributed concentration.

The accuracy of the laboratory method has a huge influence on the quality of the NIR calibration. It is important to use the most accurate laboratory method (not the weight loss with IR quick drying for moisture determination, but the drying oven method or better the water determination by titration according to Karl Fisher).

The time between the laboratory determination and collecting the NIR spectra should be as short as possible.

Calculating the Quantitative Calibration

The suggested calculation methods are called **PCR** (principal component regression) and **PLS** (partial least squares regression). The algorithms mostly lead to similar results.

The choice of the relevant wavelength ranges and data pretreatments can improve the result of the calibration. With the applied data pretreatments unimportant spectral variations can be suppressed or the coherence between intensities and concentrations can be simplified. For example it is recommended to convert reflectance spectral data into absorbance data that depend directly on the concentration values (according the Beer-Lambert law, which is limited valid for liquids in NIR). The difficulties in choosing the data pretreatments are that they always have combined influence and that the effects depend on the applied order. Theoretical considerations take a back seat in the practice. Often the model can be optimised by trying different variations, that are calculated.

Concentration = Bo + B1*Amplitude1 + B2*Amplitude2 + + Bn*Amplituden [1],

These establish the coherence between the measured amplitudes and the searched concentrations. This equation is strongly simplified, a detailed explanation is shown in chapter "Calibration Methods" Link : <u>Principal component regression (PCR)</u> & <u>Partial least squares regression (PLS)</u>

The choice of parameters and calculation methods can be done automatically by using the Calibration Wizard.

Figure 2: For the review of a quantitative calibration the prediction values according to equation [1] are compared with the reference values. In an ideal case, the corresponding points are lying on the 45° calibration curve through the zero point both for the calibration and validation samples.

Inspection of the quantitative calibration

Precision	the SEC and SEP provide the magnitude of the standard deviation for the calibration set and the independent validation set. The two values should be as small as possible , but they are likely to be comparable with the standard deviation of the conventional laboratory method . With an acceptable calibration, the two values are also roughly equal (Consistency: »100)
Accuracy	the V-Set Bias provides information on the average deviation of the predicted values from the true values. This value gives information on a systematic deviation of the calibration and therefore should be as close to zero as possible. The C-Set Bias is zero by definition.
Regression coefficients, r	show how well the predicted values (NIR values) match the reference values (original property values) on average.
Q-Value	for optimisation, different parameters are integrated in this quality factor. The Q-Value lies between 0 (= inoperative calibration) and 1 (= ideal calibration)

Possible reasons for bad calibration results

Outliers can be recognised for the differently calculated calibrations as big differences between predicted values and reference values appear.

Remedy: Outliers must be erased from the calibration as well as the validation set. This always must be combined with a careful clarification of the reason for the appearance of the Outlier.

To find out if a reference value or the measured spectra must be regarded as an Outlier, the score plots should be reviewed (Graphics / Scores / 2D-Scatter).

- In case spectra breaking ranks, show clearly deviating Scores and Residuals (Graphics / Spectra / Residuals), these spectra are real outlier and should be eliminated from the calibration / validation.
- □ In case there are big differences between the reference values and the predicted values, but the Scores of the referring spectra do not have particular deviations with high probability, the Outliers appear because of false reference value. The lab determination should be repeated.
- Group of samples with systematically deviations: this effect can be seen from time to time when samples are evaluated their reference values have been determined in laboratories not using exactly the same reference methods. Here only an alignment of the reference methods can help.
- Significantly different results depending on the chosen classification of the samples into the calibration and validation set: the number of used samples is too small, for instance because of not considered, hidden properties.

Remedy: Selective completion of the master data set that all possible variations flow into the calculation.

Application of a quantitative calibration and interpretation of the results

During the application of a quantitative calibration, the referring concentration values of the measured spectrum are calculated according to equation [1] and indicated.

These calculations always lead to a result, even when performing faulty measurements. (e.g. sample of completely different, not calibrated substance class). The calculation of the concentration is therefore enlarged with two further checks:

- the concentration values found must be within the original calibration range, a warningand action-**limit** can be adjusted as well.
- make sure that the new measured spectrum matches the calibration spectra and that the **Residual** is within the allowed limit. A warning appears, when the residual of the measured spectra is bigger than the maximum allowed residual. Results of the spectra with Residual outlier are not taken for the average calculation of multiple measurements.

1.2 Introduction to NIRCal

1.2.1 General

The work flow for typical NIR Application with Büchi NIRWare is:

- 1. Create an Application in NIRWare Application Designer for reference measurements
- 2. Data Acquisition Spectra collection with NIRWare Operator NIR- Spectroscopy
- 3. **Assign Property** value to spectra with NIRWare Sample Manager Spectra + Reference Analysis
- Calibration build mathematical models with <u>NIRCal 5</u> Correlation known Spectra <- -> Concentrations / Identity
- 5. Copy and modify the Application for routine measurements
- 6. Assign the created calibration to the routine application
- Use the mathematical models/calibrations within an Application in the NIRWare Operator for Predictions Unknown Spectra -> Concentrations / Identity

In case a calibration after the first trial is not delivering the correct results, the steps 3-7 should be repeated, the calibration should be expanded with new samples and tested again.

All data (like spectra, property value, projects, calibrations, etc) are saved in the NIRWare Database.

NOTE

To be able to take full profit from all the possibilities of the NIRCal chemometric software, a **Buchi training** is highly recommended.

1.2.2 Starting NIRCal

Windows 7: Start / All Programs / BUCHI / NIRSolutions /NIRCal

Windows 10: Write "NIRCal" in the main screen and navigate to

programs Icon:

To use NIRCal Log On with User name and Password.

Logon			
	Logon to 'NIRCal'		
	User name	I	
	Password	[<u></u>
	and the second division of the		
	1.1		× ×

User rights and setup is managed with the NIRWare Suite "Security Designer". Please refer to the corresponding documentation within the SW-Manual for NIRWare.

NIRCal opens an empty project.

1.2.3 NIRCal Project

NIRCal stores the imported spectra and their properties , which belong together in a project.

A project contains:

- **spectra:** the imported spectra as they were measured;
- □ **properties**, the property names with their values, which belongs to the loaded spectra and can not be modified in NIRCal;
- □ the **calibrations**, which have the information about the used data selections and the calculated results;
- □ **matrices**, which have all chemometric results of the active calibration.

NIRCal - [N	UR-Ex	plorer: ToDI	Sugar	Petri]	-		38				_0	×
File Edit	View	Workspace	Project	Calibration	Wizard	Tables	Graphics	Modules	Window	Help	_ 0	X
 Project Instrum ⊕ ⊡ Spectra ⊕ ⊡ Propert ⊕ ⊡ Calbrat ⊕ ⊡ Matrice 	vents v ies dons s											
Ready										BUL	E CIR	1.

Note: Instruments is not used in NIRCal 5 anymore.

Related Topics for Spectra import:

Search and Import Spectra from NIRWare Database Import Spectra from File Convert and Import spectra from other instruments to DB Use NIRCal for any type of Data

NOTE

It is possible to import and export spectra between NIRWare databases within the Software "NIRWare Management Console - Administrative Tools"

1.2.4 Spectra Overview

All spectra measured or imported into this project can be seen here. Items marked with a yellow pen can be edited by pressing F2 or a double click.

Project	#'	Name	Meas	Scans	Instrument Type
- instruments	早1	acetone 1	1	16	46210
🖻 🔄 Spectra	4 2	acetone 2	1	16	46210
- 🗠 acetone 1	平3	acetone 3	1	16	46210
acetone 2	亭 4	acetone 4	1	16	46210
acetone 3	1 5	acetone 5	1	16	46210
acetone 4	6	acetone 6	1	16	46210
acetone 5	事7	ethanol 1	1	16	46210
acetone 6	4 8	ethanol 2	1	16	46210
ethanol 1	\$ 0	ethanol 3	- -	16	46210
ethanol 2	10	ethanol 4	1	16	46210
ethanol 3	10	ethanol F	-	16	46210
ethanol 4		ethanol 5	1	10	46210
ethanol 5	12	ethanol 6	1	16	46210
ethanol 6	13	toluee 1	1	16	46210
toluee 1	14	toluene 2	1	16	46210
toluene 2	一 15	toluene 3	1	16	46210
toluene 3	平 16	toluene 4	1	16	46210
toluene 4	17	toluene 5	1	16	46210
toluene 5	18	toluene 6	1	16	46210
toluene 6	平 19	dichlormethane 1	1	16	46210
- 🗠 dichlormethane 1	平 20	dichlormethane 2	1	16	46210
- 🚾 dichlormethane 2	4 21	dicholormethane 3	1	16	46210
- 🗠 dicholormethane 3	事 22	dichlormethane 4	1	16	46210
- 🗠 dichlormethane 4	23	diblormethane 5	1	16	46210
···· <u>····</u> dihlormethane 5 ····· <u>···</u> dichlormethane 6	24	dichlormethane 6	1	16	46210

Explanation of the symbols (right window):

4 Spectra belonging to the C-Set

Spectra belonging to the V-Set

Spectra in unused Set = U-Set (these spectra are not used for calibration nor for the validation of a calibration

Spectra in C- and V-Set at the same time. Overlapping is not allowed.

Red color indicates selection. These spectra for example can be assigned to the user set and be plotted separately.

1.2.5 Properties Overview

All properties in this project can be seen here. Items marked with a yellow pen can be edited by pressing F2 or a double click.

Min/Max represents the calibration range for quantitative properties. For qualitative properties Min/Max is shown as 0/1.

1.2.6 Calibration Validation Methods

To be able to judge the performance of a calibration a set of independent validation samples is necessary.

Validation Set (VS)

Normally all spectra within a project are divided into 2 sets with a suggested ratio of 2/3 to 1/3. The two sets should be completely independent from each other.

- C-Set (Calibration Set)
- V-Set (Validation Set)

Spectra in the V-Set are not used for the calibration, the V-Set spectra are used like unknown samples to judge the quality of the calibration (internal validation set). Only the C-Set spectra are involved in the loading calculation.

Enough spectra of the sample should be available.

VS can be used for all calibration methods.

Cross Validation (CV)

Cross validation (CV) uses all samples as the calibration set for **quantitative calibrations** except one sample (or a small group of samples) which is left out.

Validation is accomplished by predicting the left out samples and by systematically varying the

selection of left out samples. The procedure is time consuming because for each selection a

calibration has to be calculated. The method is especially useful when the total number of samples is small (< 50 samples).

Full cross validation (FCV) means that n-calibrations are calculated so that one spectrum has been left out and all other are in a calibration.

Limitations

- only available for **PCR** and **PLS**;
- needs at least 2 CV groups or at least 4 C-Set spectra for one-leave-out (full cross validation; FCV);
- will delete the V-Set spectra selection, in case it is not empty.

1.2.7 Calibration Methods

Qualitative Calibrations / Identification

Target is to identify the **membership** of a sample to a property group. The property groups can be chemically completely different or similar to the same substance. Both implemented method are using PCA:

- Cluster Analysis <u>CLU</u>

Quantitative Calibrations

Target is to determine the **concentration value** such as content in %, OH-value or **physical parameters** like density, viscosity.

In NIRCal implemented algorithms are:

- □ Principal component regression <u>PCR</u>
- Partial least squares regression <u>PLS</u>
- □ Multiple linear regression MLR

PCR, PLS, PCA (CLU) and SIMCA are principal components based methods, MLR and also **library search** with spectra comparison are spectra based methods.

- Calibration
 Inputs are the measured spectra with their properties and with the reference values together with the calibration data selection.
 Outputs are the calibration for the properties together with the validation for the validation set (V-Set) spectra or the result of Cross Validation (CV).
- Application
 Inputs are the calibration and a measured spectrum.
 Outputs are the predicted property value(s), calibration limits or hitlist; spectral residuals.

1.2.8 Calibrations Overview

All calibrations calculated in this project can be seen here. Items marked with a yellow pen can be edited by pressing F2 or a double click.

🔁 Project	Name	Value
- 🛅 Instruments	۵ <i>#</i>	3
🗄 🧰 Spectra	🛱 Globally Unique ID	{5623E363-831B-4EDA-9CC2-10AE74AAA7BD}
🗉 🧰 Properties	🛱 Name	copy of Sugar-ID, mf-db1, 4.2-9.7, F:3
Properties Calbrations Calbration	 a) Slobally of lique LD b) Name c) Comment c) Method c) Pretreatments c) Creator c) Creator Login c) Creator Software c) Creator Software Version c) Creator Software Build c) Creator Software Build c) Creator Software Build c) Modified by c) Modified c) Iteration Limit c) Num Primary PCs c) Mean Centering c) Outlier Tolerance Score c) Outlier Tolerance Residual c) Outlier Tolerance Leverage c) Residual Limit Blow Up c) Radii Limit Blow Up c) Radii Formula c) Q-Value c) Nuther Software Leverage 	Cluster none Customer System Maintenance Administrator 10.01.2006 11:58:00 NIRCal 5.1 400 Customer System Maintenance Administrator 10.01.2006 11:58:22 3000 0 1 1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
		The second second second

New (active) calibration, not yet stored in the database

XI Stored calibration not in "Edit" mode (availability for "Edit" mode depends on Lifecycle status)

Stored calibration in "Edit" mode

1.2.9 Matrices Overview

The matrices shown here depend on the selected calibration and validation method. Items marked with a yellow pen can be edited by pressing F2 or a double click.

1.2.10 Data

Raw data like **spectra** and **property values** are loaded from the NIRWare Database. Spectra and property values, loaded from the database, are **not modifiable** in NIRCal anymore. Pretreatments never change the original spectra.

These data are stored in a NIRCal **Project**. Each project has a first calibration, which has an organiser function and this can not be deleted. Calibration specific data like selections (Spectra, Wavelength, Pretreatments, Principal Components) are stored for each **calibration** separately together with the selected chemometric methods calculated data. Approved calibrations, which are released for the **application** according the Lifecycle procedure, can be used in the NIRWare Operator. Link: <u>Calibration Handling</u> according to the Lifecycle.

The main and intermediate data are stored in **matrices** (e.g. Original Spectra - and Original Property matrices), which are available in table or graphic form. Intermediate data e.g. Scores and Loadings are calculated on demand by the active calibration settings.

Matrices can be exported to MATLAB as .dat files or to EXCEL as xlm files.

- MATLAB : NIR-Explorer / Matrices / "Loadings" / PopUp Menu / Export.
- EXCEL: NIR-Explorer / Matrices / "Loadings" / PopUp Menu / Table. In the Table PopUp Menu / Export Table...

Link: Matrices

NIRCal 5 can work as File- and as Database - oriented software.

With NIRCal it is possible to **import** data from files and to store data to **files**. NIRCal 5.4 downward compatibility of spectra and properties is supported to NIRCal 5.2 as .nir, .ncf and JCAMP-DX file. In NIRCal 5.2 the NIRCal 5.4 files can be imported with: File/ Import/ Spectra.

The loaded spectra can be also stored in the **database**. A spectra conversion from the older NIRCal 4 data or from other software is possible in this way. The following data types can be imported:

- Projects in format ".nir";
- Spectra with properties in format ".nsf, .bmp, .dat, .csv, .spc, .dx, .jdx, .jcm, .nir "
- □ BCAP-Series in format ".S??" (Spectra file)

It is not possible to import data from NIRCal 4 ".ncf" format, because ncf-files do not include spectral data.

It is important to take care of the **compatibility** of the spectra from different instruments!

Link: Convert and Import..in NIRWare DB.

1.2.11 Selections

Data selections are needed to group the data before the calculation of a calibration. For each calibration the selections can be different.

Calibration method selection

□ Choose the method according to the target of the application.

For quantitative applications there are MLR, PCR or PLS and for qualitative application Cluster or SIMCA are available.

Validation method selection

To test the validity of a calibration **internal test** samples are used in the validation mode: **VS**. For quantitative calibration the Cross Validation: **CV** is available.

The default method is VS: Validation Set, where the V-Set spectra should be selected by the user. You can also use the spectra selection wizard.

Data Sets Selection

Spectra Selection

The selection can be made in NIR-Explorer:

Instruments	母 All Sportra	Contraction of the second second	A COLUMN TWO IS NOT THE OWNER.		
		24	24	1-24.	100
Spectra	🖉 User Spectra	0	24	nothing selected.	
Properties	🖉 Calibration Spectra	16	24	1-4, 7-10, 13-16, 19-22.	
Calibrations	🖉 Validation Spectra	8	24	5-6, 11-12, 17-18, 23-24.	
Cluster	🖉 Residual Outlier Spectra	0	24	nothing selected.	
	🖉 🖉 Score Outlier Spectra	0	24	nothing selected.	
	🖉 Property Outlier Spectra	0	24	nothing selected.	
Properties PCs Pretreatments	Leverage Outlier Spectra	0	24	nothing selected.	

All Spectra	not modifiable, determined through the number of imported spectra.
User Spectra	mainly used for visual comparison, any selection is acceptable, this selection has no correlation with the C-, V- or U-Set spectra.
Calibration Spectra	spectra selected for the calibration: C-Set, about 2/3 of all spectra for VS mode.
Validation Spectra	spectra selected for the validation: V-Set (1/3 for VS).
Outlier Spectra	result of the "Outlier Detection" wizard for the statistical residual, score, property value and leverage outliers in C- and / or V -Set

Each of these sets, except of "All Spectra", can be edited by the user.

Select spectra for the calibration (Calibration Spectra = C-Set) and for the validation of the calibration (Validation Spectra = V-Set). The C-Set will be used for the calculation of the calibration, the V-Set is used as an internal test of the calibration.

The same spectra should not be defined as C-Set and V-Set Spectra at the same time. If so then the spectra will be marked with a question symbol in the spectra overview and following message appears, that easily allows to remove the spectra set overlap automatically:

Nircal				×
	Overlap (actual s 8. (total 1/80) remove overlap f remove overlap f	elected Spectra rom Calibration rom Validation S) in Calibration/Valid Set [Yes] ? Set [No] ?	lation Set :
	Ja	Nein	Abbrechen	

Link: Chemometrics / Selections / Spectra Data Set

Wavelengths selection:

- All Wavelengths: the measured wavelength/ wavenumber range and the number of wavelength / wavenumber data points, which is determined by the used instrument and by the resolution;
- □ Calibration Wavelengths: only the selected range will be taken into account for the calculation and later for the application.

Link: Chemometrics / Selections / Wavelength Data Set

Properties selection:

- □ All Properties: number of properties belonging to the imported spectra;
- Calibration Properties: only the selected properties will be taken into account for the calculation and later for the application. Normally all or several will be selected for Cluster calibration, only one should be selected for quantitative and for SIMCA calibration method. Link:
 Chemometrics / Selections / Properties Data Set

Principal Components Selection:

- □ All PCs: the number of **primary principal components** used for the calibration, they are used for the spectra reconstruction and for the Residual calculation;
- □ Calibration PCs: only the **selected PCs** will be taken into account for the calculation and later for the application, they are used in quantitative calibration for the **property value** calculation or in qualitative calibration for the property separation and for the **allowed tolerance area** calculation.

Link: Chemometrics / Primary Principal Components & Secondary Principal Components

Pretreatments selection:

The measured spectra can be modified before the calculation with several pretreatments or different combinations of them.

NOTE

The original spectra are still the same and will not be modified.

The list of in NIRCal 5 implemented <u>pretreatments</u> indicates the huge flexibility of the software. The pretreatments used in the calibration will be applied in the application also.

Blow Up Parameter:

The allowable limits are calculated with a default blow up limit. These limits can be adjusted by the user:

- for quantitative calibrations the scores and residual blow up limits;
- □ for qualitative calibrations the scores, residual and radii blow up limits and the radii calculation formula.

Link: Chemometrics / Blow Up Limits

Outlier detection limit

To calculate the statistical outliers the limit can be edited by the user or can be calculated according the T-distribution for the actual calculation.

Link: <u>Chemometrics</u> / <u>Outlier Detection</u>

1.2.12 Graphics

All data that is available in table format can be plotted graphically as well.

In NIRCal 5 there are 1, 2 and 3 dimensional plots available.

The 1D scatter plot is new in NIRCal 5: it shows only one selected line or column of a matrix. This scatter plot can be used for selections.

The pop-up menu "Options/Show line" or the keyboard shortcut "W " can change the point to a line.

Each 2D plot can be shown as a **front view** (this is normally the default adjustment), **top view** and **transposed**.

The plots can show different selections, while the selection plotted is always visible on the subtitle.

The use of modern rendering techniques, such as Anti-Aliasing and Alpha-Blending (new hardware accelerated features of newer graphic cards), allows to eliminate jagged edges and stair-stepped lines. NIRCal applies these features to improve the graphical performance.

Anti-Aliasing (hotkey: a) eliminates jagged edges and stair-stepped lines. This can be switched on permanently under: Edit / Options / 2 D Plot. Opening the 2 D plots is quicker with Anti-Aliasing using new graphic cards, but can be slower with an older driver.

Alpha-Blending (hotkey: b) allows a partial transparency with steps of 1, 1/2, 1/4, 1/8. 1/32, 1/64 (by pressing b several times) and helps to look through huge amount of data. The Alpha-Blending level can only be seen from the data color intensity: the more often the point is drawn, the brighter the color. Each NIRCal rendering can be stopped immediately by pressing the ESC key. Anti-Aliasing and Alpha-Blending are very useful for huge amount of spectra especially for 2-D spectra

plots (original, pretreated and residuum); Score plots (vs. PC or vs. Scores) and calibration curve (original vs. Predicted).

On the left side the common drawing style is used, where no details can be seen. Anti-aliasing and alpha-blending (right side) allow to look through a huge amount of data and to detect hidden structures.

Note: In case a one dimensional matrix - which is a vector- is plotted, the subtitel is "All One". "One" indicates the first selected "dimension" and not the value of the vector!

The colors are also selection dependent. The plots can be opened as Table with the keyboard shortcut "G".

On each plot the X- and Y-axis can be flipped using the pop-up menu: Option/ Flip X-Axis (x) and Option/ Flip Y-Axis (y).

2D combined scatter plots: beside the standard 2D plots it is possible to combine matrices, even if they have only with one dimension matching. This can be created manually in the NIR-Explorer selecting the two matrices and opening in pop-up menu the "2D-Combined Scatter". There are several plot combinations available in NIRCal 5: under: <u>View</u>.

These plot combinations, which are fixed, can help to make the data selections easier (spectra, wavelengths, properties, PCs) with useful graphics.

The **dependency plots** can help to find hidden correlation between spectra and different users, or time, or instruments.

The users can create own plot combinations and can save them under: Workspace.

1.2.13 Protocols

The term "protocol" in NIRCal means report.

Calibration Protocol

The **calibration protocol** is an important validation document, which contains all information about a calibration, like the user specific data selection and the results of the chemometrical calculations applied for the C- and V-Set spectra in the project. The calibration protocol is stored within the calibration.

Link: Calibration protocol

Validation Protocol

The **prediction protocol** is an in important validation document, which contains the results of a prediction of a calibration applied for other spectra, mainly not existing in the project. The prediction protocols help to find out possible interfering substances for the qualitative calibrations. Link: <u>Prediction protocol</u>

2 Tutorials

2.1 Qualitative

2.1.1 Qualitative Tutorial

Qualitative calibrations are used for **identification** of different chemical substances and for separation of different qualities of the same substances.

Either **Cluster** or **SIMCA** method can be used for identification, both using Principal Component Analysis PCA.

The Cluster method is explained first.

For detailed explanation to the method see Link : Cluster (CLU) and Link : SIMCA

2.1.2 Flow Chart Qualitative

The flow chart shows the way how to build a qualitative calibration using the Cluster method.

NOTE

Loop 1 to Loop 3 represent the sequence for optimising a calibration. After each change in the selection, the calculation and principal component selection should be repeated.

2.1.3 Selecting the Calibration Method

The calculation method can be selected in the Menubar: [Calibration / Method / CLU Cluster] or by

clicking the icon

2.1.4 Selecting the Calibration and Validation Spectra

Samples of known characteristics, both chemical and physical are used to generate qualitative calibrations. For each substance classes 5-15 different batches should be used for the calibration. The measured spectra are divided into two sets:

- Calibration Spectra: spectra selected for the calibration: C-Set, about 2/3 of all measured spectra, at least 3 spectra.
 Generally, the calibration spectra should contain all "acceptable extreme information" to define the limits of acceptance.
- Validation Spectra: about 1/3 of all measured spectra selected for the validation V-Set at least 2 spectra. Only if a calibration treats the validation spectra equal to the calibration spectra, the settings can be considered as OK.

NOTE

These two groups of spectra should be:

- independent from each other;
- \Box no overlapping allowed.

Suggested selection: Blockwise: 6-3, if always 3 spectra per batch where measured. In case some extreme samples are in the V-Set, see Loop 3.

It is **possible to leave out** some spectra from the C- and from the V-Set, these spectra are in the **Unused Set** = U-Set:

C-Set + V-Set + U-Set = All Spectra

The U-Set is visible in the calibration results (see <u>Calibration Protocol</u>), but will not influence the calibration and validation results e.g. will not be considered for the Q-Value calculation.

Link: Spectra selection

2.1.5 Selecting the Calibration Wavelengths

The exact wavelength / wavenumber range measured is dictated by the instrument type used for the spectrum measurement. The selected wavelength / wavenumber range depends on the application and the measuring option used.

NOTE

In general the calibration wavelength / wavenumber range should be as wide as possible.

Suggested wavenumber range for NIRFlex N-500 with measuring options

- \Box Solids and Liquids: 4'000-10'000 cm⁻¹;
- ☐ Fiber Optics: 4'500-10'000 cm⁻¹.
- Solids with Tablet Accessory: $6'000-11'520 \text{ cm}^{-1}$.

The calibration wavelengths define the spectrum range, where the mathematical algorithms PCA is applied.

Suggested selection: use all measured wavenumber in the first calculation, otherwise see Loop 2.

Link Wavelength selection

2.1.6 Selecting the Calibration Properties

The calibration properties are the substances to be identified in the application. The mathematical algorithm of PCA will be applied for the selected properties. Normally **all** qualitative properties that must appear in the calibration model must be **selected**.

Suggested selection: select all properties.

Link Calibration property selection

2.1.7 Applying Data Pretreatments

Data pretreatments are used to eliminate non important effects or to enlarge minor effects of the measurements.

Suggested selection: perform the **first calculation without pretreatment**, using the spectra as they have been measured. The first step **to optimize** the calibration is to **add** and **change** the pretreatments.

Link: Pretreatment selection

2.1.8 Performing a calibration (calculation)

After selecting the **spectra** (C-Set and V-Set spectra), the **wavelength** range (calibration wavelength) and the **properties** (calibration properties), the chemometric parameters (principal components, scores, residuals,etc) will be calculated.

For the calculation of the PCA the software use only the spectra selected into the C-Set referring to the calibration wavelength and the choice of the data pretreatments. The spectra of the V-Set will only be used to prove and judge the calibration

An overview of the calculation can be obtained in the Menubar: View / Overview.

The result of the calibration will depend on the selected number of **primary and secondary principal components**, the first step is to decide on the number of PCs.

The calibration can be optimised **manually** or using the <u>Calibration Wizard</u>. Here the manual selection criteria are described.

2.1.9 Primary Principal Components

Primary principal components are the PCs, which are used for reconstruction of the spectra. They determine the residual value. The more primary PCs used, the smaller the allowed residual of the calibration.

Recommended graphics for primary PCs selection:

- □ <u>X-PRESS</u> function,
- Loadings graphic;
- □ Spectra <u>Residuum</u> plots.

Suggested selection: avoid overfitting, do not use too many primary PCs. Link <u>Primary PCs</u>

Adjust the desired number of primary PCs. Link: Adjusting Primary PCs

2.1.10 Secondary Principal Components

The secondary or calibration PCs are used for the **separation of the different substances** and are responsible for the **tolerance radii calculation**. The number of secondary PCs is limited by the number of primary PCs.

Recommended graphics for the selection:

- □ 2- and 3-D Scores plots,
- Scores against Spectra and
- Property Box Radii.

These plots are part of the Overview-Plot.

Suggested selection: use just as many secondary PCs as necessary to get a selective calibration. Link: <u>Secondary PCs</u>

Adjust the desired number of secondary PCs. Link: Adjusting Secondary PCs

Setting the Radii Formula and Radii Blow up Limit

Calculation of the tolerances can be made with two different formulas and with different blow up limits.

NOTE

It may be necessary to reduce the blow up limit for different chemical substances, when Formula 1 is used in order to increase the sensitivity of the calibration.

Edit the value for Radii Blow Up Limits or Formula.

NOTE

After each new selection a recalculation should be performed again.

2.1.11 Judging the Calibration

In a good calibration, the different properties should appear as a **separated and ideally compact cluster**. The proper clusters are visible in the Overview.

For judging the quality of calibration the following criteria are used:

- Cluster per Property: should be one, so only one cluster for each property:
- Spectra Residuals too big: zero (no residual outlier);
- Property Residuum: should be zero which means, that all spectra are in the right cluster;

The 2nd column of the Overview contains important control windows.

- □ <u>Q-Value</u>: should be as close to 1 as possible;
- □ <u>Calibration Protocol</u>: show the important adjustments and result of the calibration
- Prediction Protocol show possible wrong identification for substance spectra not involved in the calibration

After several calibration **optimizations and running the automatic calibration wizard**, there will be several calibrations in the project. Sort the calibrations with a click on the Name or Q-Value.

NOTE

Keep only the best calibration and delete all others.

2.1.12 Save Calibration - Lifecycle

Save the project and the calibrations to the database. Only approved calibrations according to Lifecycle will be available in the NIRWare Application Designer. See <u>Calibration handling</u> for further details.

2.1.13 SIMCA

It is possible to transfer a cluster calibration into several <u>SIMCA</u> calibrations. See <u>Transform Cluster to</u> <u>SIMCA</u>.

This tool creates for all C-Set properties one SIMCA calibration, the name of the calibration is "SIMCA + calibrated property name".

2.2 Quantitative

2.2.1 Quantitative Tutorial

Quantitative calibrations are used for the **determination** of different concentrations or physical parameters.

For quantitative calibration either the the **PCR** or **PLS** method can be used, less useful is the <u>MLR</u> method.

For detailed explanation see: <u>PCR</u> and <u>PLS</u>

2.2.2 Flow Chart

The flow chart shows how to build a quantitative calibration

NOTE

Loop 1 to Loop 3 represent the sequence for optimising a calibration. After each change in the selection, the calculation and principal component selection should be repeated.

2.2.3 Selecting the Calibration Method

For the quantitative calibration, basically two calculation methods are available:

- Principal Component Regression (PCR) consists of a Principal Component Analysis (PCA) with subsequent MLR.
- PLS Partial Least Squares Regression calculates the PCs with iteration in several steps, whereas spectral information and property values are considered.

The calculation method can be selected in the Menubar: Calibration / <u>Method</u> / PCR Principal Component Regression or Calibration / <u>Method</u> / PLS Partial Least Square regression or by clicking the icon PCR or PLS

2.2.4 Selecting the Calibration and Validation Spectra

Samples of known characteristics, both chemical and physical are used to generate quantitative calibrations. Ideally 60, but minimum 10 samples for each parameter with different concentration should cover the calibration range homogeneously. The measured spectra are divided into two sets:

□ Calibration Spectra: spectra selected for the calibration: C-Set, about 2/3 of all measured spectra.

Generally, the calibration spectra should contain all "extreme information" to define the limits of acceptance. The spectra with the highest and lowest property values should always belong to the C-Set.

Validation Spectra: about 1/3 of all measured spectra selected for the validation V-Set. The V-Set should be spreaded over the whole calibration range, possible equally. Only if a calibration treats the validation spectra equal to the calibration spectra, the settings are considered as OK.

NOTE

These two groups of spectra should be:

- \Box independent from each other; \Box
- no overlapping allowed.

Suggested selection: use the selection in the **calibration curve** graphic. In case some extreme samples are in the V-Set, see Loop 3.

It is **possible to leave out** spectra from the C- and from the V-Set (e.g. unknown property values), these spectra are in the Unused Set = U-Set:

C-Set + V-Set + U-Set = All Spectra

The U-Set is visible in the calibration results (see <u>Calibration Protocol</u>), but will not influence the calibration and validation results e.g. will not be considered for the Q-Value calculation.

Link: Spectra selection

2.2.5 Selecting the Calibration Wavelengths

The exact wavelength / wavenumber range measured is dictated by the instrument type used for the spectrum measurement. The selected wavelength / wavenumber range depends on the application and the measuring option used.

NOTE

In general the calibration wavelength / wavenumber range should be as wide as possible.
Suggested wavenumber range for NIRFlex N-500 with measuring options

- Solids and Liquids: $4'000-10'000 \text{ cm}^{-1}$;
- Fiber Optics: $4'500-10'000 \text{ cm}^{-1}$.
- □ Solids with Tablet Accessory: 6'000-11'520 cm⁻¹.

The calibration wavelengths define the spectrum range where the mathematical algorithms is applied.

Suggested selection: use all measured wavenumber in the first calculation, otherwise see Loop 2. Link

Wavelength selection

2.2.6 Selecting the Calibration Properties

The calibration property is the parameter, that is required to determinate in the application. The mathematical algorithm will be applied for the selected property values

Suggested selection: create separate calibration for each parameter - single property calibrations: only **one quantitative property is selected** in each calibration.

NOTE

Quantitative calibration with several properties can not be stored to the Database, because it can not be used in the application.

Link Calibration property selection

2.2.7 Applying Data Pretreatments

Data pretreatments are used to eliminate non important effects or to enlarge minor effects of the measurements.

Suggested selection: perform the first calculation without pretreatment, using the spectra as they have been measured. The first step to optimize the calibration is to add and change the pretreatments.

Link: Pretreatment selection

2.2.8 Performing a calibration (calculation)

After selecting the spectra (C-Set and V-Set spectra), the wavelength range (calibration wavelength) and the properties (calibration properties), the chemometric parameters (principal components, scores, residuals, etc) will be calculated.

For the calculation of PCR or PLS, the software uses only the spectra selected into the C-Set referring to the calibration wavelength and the choice of the data pretreatment's. The spectra of the V-Set will only be used to prove and judge the calibration

An overview of the calculation can be obtained in the Menubar: View / Overview.

The result of the calibration will depend on the selected number of **primary and secondary principal components.** The first step is to decide on the numbers of PCs.

The calibration can be optimised manually or by using the <u>Calibration Wizard</u>. Here the manual selection criteria are described.

2.2.9 Primary Principal Components

Primary principal components are the PCs, which are used for reconstruction of the spectra. They determine the residual value. The more primary PCs used, the smaller the allowed residual of the calibration.

Recommended graphics for primary PCs selection:

- □ <u>X-PRESS</u> function,
- Loadings graphic;
- □ Spectra <u>Residuum</u> plots.

Suggested selection: avoid overfitting, do not use too many primary PCs. Link <u>Primary PCs</u>

Adjust the desired number of primary PCs. Link: <u>Adjusting Primary PCs</u>

2.2.10 Secondary Principal Components

The secondary or calibration PCs are used for the **parameter** calculation. The number of secondary PCs is limited to the number of primary PCs.

The target is the best matching between the original reference values and the predicted NIR values. This can be seen in the "Predicted Property vs. Original Property" plot and can be judged with statistical values like:

- □ standard errors: SEC / SEP;
- V-Set Bias;
- □ regression coefficients;
- □ PRESS-values;

These plots are part of the Overview-Plot.

Suggested selection: use the optimal number of secondary PCs, which gives the best result for all spectra in the C-Set and V-Set. Link: Secondary PCs

Adjust the desired number of secondary PCs. Link: Adjusting Secondary PCs

NOTE

After each new selection a recalculation should be performed again.

2.2.11 Judging the Calibration

The target is the best matching between the original reference values and the predicted NIR values.

This can be seen in the calibration curve and can be judged with statistical values like:

Precision	SEC/SEP	as small as possible (around the standard deviation of the reference method)
Accuracy	V-Set Bias	around 0
regression coefficients	r	close to 1
Q-Value		close to 1
Consistency		around 100 (80-110)

These values are documented in the Calibration Protocol.

After several calibration optimizations and running the <u>automatic calibration wizard</u>, there will be several calibrations in the project. Sort the calibrations with a click on the Name, Q-Value or e.g. SEP.

NOTE

Keep only the best calibration and delete all others.

2.2.12 Save Calibration - Lifecycle

Save the project and the calibrations to the database. Only approved calibrations according to Lifecycle will be available in the NIRWare Application Designer. See <u>Calibration handling</u> for further details.

2.2.13 Create a Quantitative Calibration with Cross Validation

The above tutorial is valid for a user selected validation set (VS method).

It is possible to create a quantitative calibration using the <u>Cross Validation</u> (CV method), in that case **all spectra should be in the C-Set**, the **V-Set should be empty**.

3 Chemometrics

3.1 Calibration Methods

3.1.1 Principal Component Analysis: PCA

Principal Component Analysis is a **mathematical**, **statistical** evaluation of a **large amount of chemical data**. In this case the chemical data are the measured NIR spectra. PCA is made for two reasons:

- to reduces the data amount without loosing necessary information. Noise is truncated by the number of primary PCs;

- to evaluate the measured spectrum automatically after creating a calibration.

With today's powerful computers, the prime object is no longer the reduction of the data volume. Today, the main goal of PCA is to **find and automatically evaluate** characteristics of identity, quality and quantity in the spectra.

Each spectrum measured with **NIRFlex N-500** consists of **1.501 data**, which correspond to the intensity values of the 1.501 support points on the wavenumber scale.

In order to obtain a good calibration, a large number of spectra is needed. For 100 substance spectra, this already gives us 150.100 data points, which places an enormous computing workload on computers.

To achieve acceptable computing times, the spectral data are therefore efficiently **compressed** with the aid of PCA without **loosing any important information**. For this purpose, PCA utilises the redundancy occurring in the spectra. With PCA, so-called **principal components** are extracted which are statistically independent from each other and which are therefore orthogonal relative to one another, yet are still capable of adequately **reconstructing the original spectra**.

The PCA will always be performed with the calibration spectra set in the selected wavenumber with the selected pretreatment.

A geometric explanation will serve to visualize the PCA: it is not possible to imagine a space of 1.501 dimensions (selected wavelengths), with each wavelength or wavenumber corresponding to a dimension. But in this space, a spectrum can be represented as a point. For three dimensions, this can be shown graphically:

In mathematical terms this point is equivalent to a vector with 1.501 components (I1....I1501). Several calibration spectra produce a "cloud" of points - a cluster- in space. For a set of spectra or points in the 1.501-dimensional space, a coordinate's transformation is now performed in a way that the new origin comes to lie in the mean centre of all the spectra - mean centering - and the new space directions - principal components - lie along the greatest variance in the spectra.

The new space directions are calculated in such a way that the features with the widest variances differences- of all spectra are included in the first space directions and the higher space directions gradually evolve into noise. Space directions, which contain no any other information than noise, are no longer taken into account.

Scores: weighting of the PCs

A reduction of the dimensions is performed when the number of PC's (i) is not higher than 1.501. Through this type of data reduction it is impossible to lose information.

With today's powerful computers, the prime object is no longer the reduction of the data volume. Today, the main goal of PCA is to find and automatically evaluate characteristics of identity, guality and quantity in the spectra. As a result of the PCA, the following is obtained:

Mean spectrum: <I (k)>

Calculated by averaging the intensity values at each wavelength. The centre of the new coordinate system is shifted to that point: mean centering.

Formula: <I (k)> = [11(k) + 12 (k)+ IN(k)] / N

Principal Components: U i (k)

New space directions in the point cluster, which are also called principal components. PCs are artificial differential spectra. Each calibration can have i PCs (default is: 15).

The mean spectrum and PCs are always fixed for the calibration.

Scores: v in

Weightings of each PC after the pretreated spectrum has been transformed into the cluster. A score is the portion of a PC used for the reconstruction of the original spectrum. Each spectrum has different and up to max. i scores.

Residuum: R n (k)

The difference between the pretreated spectrum and the reconstructed spectrum is the **residuum spectrum**. When the residuum is summed across the wavelength, a number is obtained, the **Residual**.

The scores and the residual are variables for each spectrum.

Leverage

The direct distance of the spectrum from the centre of the coordinate system in the score place.

Reconstruction of a spectrum

Now, **each spectrum can be reconstructed** on the basis of a sum through multiplying of scores and PCs.

Any desired spectrum I n (k) of the calibration set is developed:

$$I_n(k) = \langle I(k) \rangle + \sum_{i=1}^{\max i} v_{in} \bullet U_i(k) + R_n(k)$$

Formula:

For the reconstruction it is now only necessary to save the scores v in and the residual R n of each individual spectrum, since the mean spectrum and PCs are constant for the entire set of spectra in a calibration.

The spectrum can also be described as the linear combination of the PCs -U i (k)- and their scores (mean-centred data matrix).

The following figure shows the reconstruction of a spectrum:

Mathematically speaking, the Principal Component Analysis is then a breakdown of the spectrum matrix into 2 smaller matrices. This matrix operation can be represented graphically for, e.g., 15 PC's in the following way:

For 100 spectra with1501 data points the following data reduction is obtained with 15 PCs:

100 x 1.501 ==> 1.501 + [15x1.501] + [100x 15] + 100 150.100 ==> 1.501 + [22.515] + [1.500] + 100

Example for a Principal Component Analysis:

4 different acetone qualities: without and with 0.3 %; 0.7 % and 1.0 % added water. There are only 3 PCs necessary to reconstruct the spectra. The scores according to PC 1 and PC 2 are repeatable. The residuum spectra have only noise character.

As a result of the PCA, we obtain those PCs which themselves represent spectra and scores for each spectrum.

The scores can be represented in two- or three-dimensional PC plots. Each number represents a spectrum, v in its score.

Here, the scores of the spectra 1, 2 and 3 of the PCs 1 and 2 are graphically represented. Each spectrum with "i" PCs will also have "i" scores. The closer together the points in the plot, the "more similar" the spectra. It is now possible to break down an unknown spectrum with regard to these two PCs, i.e. to determine the scores. If this spectrum is located, e.g. in the region of 1, it will be identified as 1.

User-allocated properties of the spectra (e.g. quantity, good/poor quality, identity) do not have any effect on the Principal Component Analysis.

The Mahalanobis distance

The introduction of Mahalanobis distances means an artificial scaling of the scores with the square scores sum being normalised. At the same time this leads to a stretching or compression of the PCs, since the product obtained from the score and PC is not changed.

A new normalisation is performed so that the scores v in of the spectra n will retain roughly the same magnitude as the PC index increases. Scores are variables without unit that must only be considered relative to one another.

The purpose behind all this is to make physical or chemical properties which have only slight effects on the spectral data and which therefore only manifest themselves in higher PCs as visible as those clearly shown in the spectra.

The scores are normalised as follows:

$$\sum_{i=1}^{\max.i} (v_{in})^2 = 1$$

Formula:

For this reason, the points in the 2-D plots are evenly distributed, i.e. the scores of all PCs have the same average magnitude. On the other hand, individual PCs are appropriately reduced or increased. For further evaluation, only the normalised scores are used.

The Büchi NIRCal software package only works with the normalised distances, the user can not see the result without it.

3.1.2 Cluster: CLU

Goal: to identify different chemical substances using the **PCA** and as a result to get a **well separated cluster** area in the scores plot **for each substance**.

The clusters are created according the selected **secondary PCs**. Secondary PCs are that PCs among the primary PCs, which shows a **clear separation** of the substances and the scores are **good repeatable**. These secondary PCs are responsible and used for the **tolerance radii calculation**.

Tools for the selection of secondary PC's:

- the scores of the spectra will be shown dependent to the PCs: Scores against Spectra. The scores of all spectra of each substance should be close together, but separated from the scores of all other substances;
- the Property Box Radii plot shows the repeatability [(max-min) scores / 2] of the scores for each property. PCs showing small Property Box Radii values (normally below 0.1) are important for the calibration;
- □ 2 and 3 dimensional **score plots**: PCs having repeatable scores should be selected.

Additional tool:

The Score Disorder values show how effectively a particular PC separates different properties (substances) from each other. By scanning the score values in one direction of a PC and counting the changes between the membership of A or B the disorder value is achieved. If a PC completely separates all calibration properties, the **disorder values** is the [number of **calibration properties - 1**]. PCs with small disorder values are possible calibration PCs.

The selected number of secondary PCs should be adjusted and the calibration should be recalculated. Link: <u>Secondary PCs</u>

The tolerance ring radii are determined according to the secondary PCs.

For this calculation the **smallest possible rectangle** (rectangle in 2D, a cuboid in 3D, an ndimensional cuboid in n-dimensions) constructed around each C-Set. The sides of the rectangles (a and b) are parallel to the axis of the PCs. The distance from the center to the side of the smallest possible rectangle is a measure of the **extension** of the C-Set, this is the so called **"Property Box Radii"**. A **'virtual rectangle**' is created **5 times greater** than the rectangle around the C-Set.

The following distances will be calculated:

- R1 smallest distance between a spectrum (substance B) to the closest spectrum of a different property (substance A).
- □ R2 smallest distance between a spectrum (substance B) to the side of its virtual rectangle. □
- R3 smallest distance between a spectrum (substance B) to the closest spectrum of its own property (substance B).
- R4 mean value out of all R3 distances of the same property.

With these distances it is possible to calculate tolerance circles with a **radius** r for every calibration spectra by using Formula 1, 2 or 3.

Formula 1:

Min. of r = R1/2 * for r = (R1+R2)/4 * f

The smaller of the two possible values for the radius "r" is used. The default setting for the **Radii Blow Up** factor "f" is 1.

Depending on the extension of the cluster (R2) and the distance between the two closest clusters (R1), the circles are closer or further away from each other. With a **Radii Blow Up** of 1 two circles **can just touch each other** but do not overlap.

For **chemically different substances** the Radii Blow up (f) may be **reduced** (0< f <1) in order to increase the sensitivity of the calibration.

NOTE: It is not suggested to have a Radii Blow up (f) higher than 1: it can cause overlapping rings!

Formula 2

If generally small tolerances are required, Formula 2 can be used:

```
 \begin{array}{ll} \mbox{min. of} & r = R1^{*}0.499 \ (0.499: \mbox{ to avoid overlapping}) \\ \mbox{or} & r = R3 \ ^{*} \mbox{ Pre Blow Up }^{*} \ f \\ \mbox{or} & r = R4^{*}0.5^{*} \mbox{Pre Blow Up }^{*} \ f \\ \end{array}
```

The smallest of the three possible values for the radius "r" is used.

The pre Blow Up factor is 5, this is an **empirically** evaluated value. The default Radii Blow Up f = 1, this value can be adapted by the user. In general it should be **increased** to get connected spheres.

Formula 3

It is used only for SIMCA calibration, where only one substance is calculated (there is no R1).

```
        Min. of
        r = R2 * 0.5

        or
        r = R3 * Pre Blow Up * f

        or
        r = R4 * 0.5 * Pre Blow Up * f
```

The smallest of the three possible values for the radius "r" is used.

The tolerance circles can now be plotted for all calibration spectra:

PC 1

These tolerance ranges will show if the sum of the radii of one property generates only **one cluster**: cluster / property should be one. In this case the number of the secondary PC selection is OK. If more than one cluster is generated, the number of the secondary PCs is not optimal or other calculation (e.g. pretreatment) should be tried.

Assessing the calibration

Cluster per Property

The Cluster per Property plot shows if all tolerance circles build one connected cluster for each property.

Here only a value of **1** is acceptable.

All spectra in the C- and V-Set should be identified correctly

The identification is made according to the distance in the scores plot and residual:

Distance

The distance to the next calibration spectra should be **smaller**, than the **tolerance ring radius** of the neighboring calibration spectrum. In this case the distance criterion is OK, the **spectrum is in a cluster**.

Property Residuum zero means, all spectra are in the correct cluster.

Here only a value of **0** is acceptable.

Property Residuum +1 means, that a spectrum is **outside** the cluster: it is **not identified**. Property Residuum -1 means, that a spectrum is **in a wrong cluster**: it is **false identified**.

Residual

The [(maximum residual of a C-Set) * 2] is the max. **allowed residual** for the calibration and later for the application.

The default residual Blow up factor is 2, it may be changed by the user (it is not suggested to use smaller values as 1).

Spectra Residual too big should be for all spectra zero.

These three criteria are showed in the Overview plot in the 2nd column.

3.1.3 SIMCA

SIMCA is a calibration method used for identification of substances. Using SIMCA a Principal Component Analysis (PCA) is made for each substance/property in the project, but **each calibration is made for only one substance**.

Cluster calibrations can be transformed to several SIMCA calibrations. See <u>Transform Cluster to</u> <u>SIMCA</u>.

This tool creates for all C-Set properties one SIMCA calibration, the name of the calibration is "SIMCA + calibrated property name".

All SIMCA calibrations take over the following default parameters:

- □ the spectra C-Set and V-Set selection of the last active cluster calibration;
- the wavelength selection from the selection of the last active cluster calibration;
- pretreatments of the last active cluster calibration;
- □ the "Mean centering after Pretreatments" is still switched on;
- □ represent the mean value spectrum;

NOTE

Switching the **"Mean centering after Pretreatment" OFF**, the first principal component represent almost the mean value spectrum. This is suggested for only one property in the calibration, which is always the case for SIMCA. SIMCA can also be created without a transformation from a cluster calibration.

- □ the number of primary principal components is selected with the <u>"Factor Selection Wizar</u>d";
- the number of secondary principal components is selected also with the "<u>Factor Selection</u> <u>Wizard</u>" according the Q-Value.

3.1.4 Transform Cluster to SIMCA

An active Cluster Calibration can be transformed to SIMCA by changing the calibration method to SIMCA. Before the wizard starts with the calculation the following pop-up window appears:

Nircal				×
?	Transform the actual	Cluster calibration	n into multiple SIM	CA calibrations ?
4	Yes: create a SIMCA (the actual Cluster No: change the activ	model per proper r calibration will n e Cluster calibrati	ty. ot be modified by on method to SIM	this operation) ICA.
	Yes	No	Cancel	1

Yes Transform the actual Cluster Calibration into multiple SIMCA Calibration using default SIMCA Parameters. The existing Cluster Calibration will not be modified.

No Change only to SIMCA method without any calculation.

Cancel Cancel the transformation and keep the current method.

For each C-Set Property of the Cluster Calibration a separate SIMCA Calibration is created.

Noject	#'	Name	Method	Pretreatments	Log
🗄 🧰 Instruments	1	0.992699, 3 Acids, 1-2/2, 4392-9996, ds2	Cluster	ds2	kelo
🗄 🧰 Spectra	2	SIMCA 100010_Citric Acid	SIMCA	none	eisr
Properties	13	SIMCA 100020_Ascorbic Acid	SIMCA	none	eisr
Calibrations O.992699, 3 Acids, 1-2/2, 4392-9996, ds2 SIMCA 100010_Citric Acid SIMCA 100020_Ascorbic Acid SIMCA 100030_Tartaric Acid Journal	114	SIMCA 100030_Tartaric Acid	SIMCA	none	eisr

Hereby the SIMCA default parameters are used and calculated. An automatic estimation of primary and secondary PCs is made.

SIMCA Overview Plot

The Overview plot is automatically opened after the SIMCA calculation is finished. Each calibration has the name:

SIMCA + substance name (property name) selected for the calibration.

The Overview plot contains the following plots:

	Plot name	Description
1	Pretreated Spectra	using the same pretreatment, as the cluster calibration
2	scores against PCs	scores against the PCs for each spectra in the project
3	scores vs. scores	in this score plot the calibrated substance is around the center (Mean Centering distance is calculated for only the C-set spectra), each other spectra, which are not in the calibration, have normally huge score values
4	spectra residual	the residuals of the calibrated substance spectra are normally smaller, as each other substance residuals
5	residuals vs. leverages	the so-called Coomans plot shows the residuals against the leverages (leverage is the direct distance of a spectrum in the score plot from the centrum)
6	NIR-Explorer	

For a SIMCA calibration the limits are also called:

- Residual : outer model distance;
- Leverage : inner model distance.

PC (Factor) Selection Wizard

🔚 Factor Selection Wizard V3.1 🛛 🛛 🔀						
Number of primary PCs	estimated 4	actual 8	OK			
Secondary PC Selection	1.2	1-2.	Cancel			
Note : start with a high num — Test Details Test 1.5 : C-Set X- Test 2.2 : Q-Value	ber of primary P PRESS Slope 1 (VS) maxima	Cs to use the est Ratio (Highest (limited) test	imation once. >>2) test : 4 ; : 2			

Primary PC selection:

Test 1.5 : C-Set X-PRESS Slope Ratio Highest test

w(i+1) = (y(i) - y(i+1)) / (y(i+1) - y(i+2)) Limit = 2 PC i for highest i where w(i) > Limit Precise

Secondary PC selection:

Test 2.2 : Q-Value maxima (limited) test

PC i for Max (QValue(i)) I < NumPrimaryPCs

NIRCal calculates the **allowed residual** using the **primary principal components** for reconstruction. Default parameter for residual

Residual Blow Up = 2.5

Allowed residual for calibration is 2.5 x max. C-Set Residual.

For each C-Set spectrum NIRCal creates a **tolerance sphere** using the **Formula 3** for radii calculation according to the Mahalanobis distances with the **secondary PCs**. This calibration sphere "inner" space defines the area for a substance.

Default parameters for scores and radii:

Scores Blow Up = 1.05

Radii Formula = 3

Radii Blow Up = 2.5

SIMCA Q-Value

The Q-Value for SIMCA calibrations can not take into account the "Property Interference" value, because there is only one cluster type in each calibration. This value is always Zero. This causes a slightly higher Q-Value against the Cluster calibrations, in case no outliers are in the SIMCA calibration.

SIMCA Method Validation

SIMCA allows that the principal component spaces **cover each other** or can **partially overlap** another spaces. To check possible overlapping the "Prediction Protocols" can be used, as it is also suggested for the Cluster calibrations.

The number "Total not identified, Cluster BAD (&)" and "Total not identified, Cluster OK (%)" can indicate the correct adjustment of the Blow up (Radii and Residual). SIMCA tolerance spheres normally lie close to the PC center, other spectra can lie also here, which causes losts of "Total not identified, Cluster BAD (&)" cases. This can be reduced by reducing the Radii Blow Up limit.

The number of "Total not identified, Cluster OK (%)" can be reduced by reducing the number of primary PCs or by increasing the Residual Blow Up limit.

Using SIMCA in application

For the identification of an unknown substance the residual should be below the allowed limit and the unknown spectrum distance should be smaller as the allowed tolerance sphere to the nearest known calibration spectrum (inside the "inner space").

In the application mode there are 2 answers possible:

Result	Residual	Distance
Identified	OK	OK
Not identified	not OK	not OK
Not identified	not OK	OK
Not identified	OK	not OK

3.1.5 Multiple Linear Regression: MLR

Multiple Linear Regression is an extension of the linear regression to several dimensions. The analysis is based on a few selected wavelengths and does not require any PCA calculation. In this procedure, the properties are calculated through intensity values and correlation coefficients, e.g. it is valid for two selected wavelengths $(I_1 \text{ and } I_2)$.

 $MLR: Prop.=a+b_{j}*I_{j}+b_{2}*I_{2}$

Where:

Prop	property of the "n"th Spectrum
а	intercept
b1	correlation coefficient of the first wavelength
I ₁	intensity at the selected (first) wavelength

Because with MLR only few wavenumber (min. 3) are used and the rest of the measured 1501 (in case of NIRFlex N-500) are automatically discarded, this simple method is not suggested to use.

The residual cannot be used for outlier detection during the application because of the extreme wavelength reduction.

This method is only suggested for **filter instruments**. For Interferometers (full wavelength range) it is suggested to use PCR or PLS.

3.1.6 Principal Component Regression: PCR

Principal Component Analysis (PCA) with subsequent MLR is called Principal Component Regression (PCR). As a first step, the principal components and scores are calculated with **PCA**. The second step is a multiple linear regression **MLR** using the scores and property values (concentrations). Since the calculation of the principal components is performed with the spectral data - independently of the subsequent regression calculation for the correlation of the quantitative values - any number of parameters can be simultaneously included in a PCR calibration. This also means that the relevant PCs for the determination of the property are not necessarily the ones describing the biggest spectral variations.

3.1.7 Partial Least Squares Regression: PLS

Partial Least Squares Regression (PLS) calculates the PC's with iteration in several steps, with spectral information and property values being taken into account simultaneously.

This calculation method is more up to date than the PCR. Based on the principle of recursion, PC's and scores are also calculated as with PCR, but the quantitative reference values are included in the calculation from the beginning.

Each of the calculated PC's in the PLS procedure contains information about the original property values (true concentration) of the samples, with the first PCs (unlike PCR) always showing the highest correlation.

If two parameters are not systematically correlated, the mathematical approximation of the spectra via PLS can never be performed for both parameters when each parameter is calibrated using its own PLS. For this reason, it is recommended to calculate properties which are not systematically correlated (e.g. ethanol and acetone contents in any given solvent mixture) in separate calibrations. Therefore, whereas PCR reduces spectral data to the most dominate dimensions, the PLS aims at the most relevant dimensions (relevant here means: best match between predicted and original values). With PLS, the PC's are calculated exactly in relation to the highest correlation in the first PC.

3.2 Calibration Validation Methods

3.2.1 Validation Set (VS)

C-Set and V-Set

C-Set (Calibration Set).

From all spectra within a project only the spectra which are in the C-Set are used for the calculation of the calibration.

V-Set (Validation Set).

From all spectra within a project only the spectra which are in the V-Set are used for an internal validation of the calibration.

Normally for VS mode 2/3 of the spectra are selected as C-Set and 1/3 are in the V-Set. This can be done with Toolbox "Set Creation".

3.2.2 Cross Validation (CV)

Cross Validation Method

Instead of dividing the samples into two groups, a calibration set and a validation set, all samples are used for calibration in CV mode. Several calibration runs are performed with all samples except a small group with which the actual calibration is tested. This group is changed for all trial runs. The validation results of all the runs are stored and lead to a standard error of the cross validation (SECV) which compares well with the standard error of predictions (SEP) obtained in VS-mode.

In case each CV group consists of only one sample (one leave out) the method is called **full cross** validation. This is the **default setting** for CV-grouping in NIRCal.

Cross validation is recommended for calibrations based on a small amount of samples. If this number is larger than 50, NIRCal suggests to use a validation set instead (this comment can be suppressed; see NIRCal Configuration Edit / Options / Calibration Defaults).

NOTE

All spectra of one sample must be assigned to the same CV-group.

NOTE

For CV mode all spectra should be assigned to the C-Set.

Limitations:

- Cross validation is available for PCR and PLS only
- Cross validation requires at least 4 spectra in the C-Set
- □ For cross validation at least 2 CV groups have to be assigned □

Cross validation will delete the V-Set assignment

Cross Validation Grouping

Menu: Calibration \ Change Data Sets \ Edit CV Groups...

lcon:

CU

In order to define the cross validation groups, the CV Group selector is opened.

	anou .					Group ∐able		OK
Random			dom			Cancel		
Nu	mber of Grou	JDS		10 +	Pro	operty Acted	ine v	apore pre:
Sp	ectra per Gro	oup		2 🙀	Nu	imber of Segn	nents	20
Sta	nt at Charac	ter		1	Nu	mber of Char	acter	s 500
								Apply
¥	Group			Siz	e	Spectra	1	short form
1	Random	Group	1		2	11,16.		
2	Random	Group	2		2	13,15.		
3	Random	Group	3		2	2,9.		
4	Random	Group	4		2	10,12.		
5	Random	Group	5		2	8,19.		
6	Random	Group	6		1	17		
7	Random	Group	7		2	7,14.		
8	Random	Group	8		2	3,18.		
9	Random	Group	9		2	1,4.		
	Random	Group	10		2	5-6.		

The various possibilities for selections are summarized in the following table.

One leave out	Each spectrum represents a group. Full cross validation
Alternate	The spectra are grouped to different groups one after the other.
	Number of Groups and Spectra per Groups can be varied, they have an
	interdependency.
<u>Sequence</u>	Consecutive spectra are grouped to the same group.
	Number of Groups and Spectra per Groups can be varied, they have an
	interdependency.
Random	Spectra are grouped randomly. The groups are filled to the maximal amount
	of Spectra per Group.
Property	For the selected Property the range (min - max value) grouped into
Segments	segments. An empty segment will not build a group.
Property Equal	All spectra with the identical property value are grouped. The property values
	are compared over all properties.
Spectra Name	All spectra with the same spectra name are grouped. The characters to
	compare can be defined with Start at Character and Number of
	Characters.
Spectra Name	Number of Characters is appraised incrementally until the spectra can be
(autom.)	grouped to more than one group.
	Start at Character is always 1.

Methods

Custom assign	This is the default method when the CV Group Selector is started . In this
Group to Spectra	mode it is possible to display a plot (Group Plot) and/or a table (Group
	Table) with the CV Group Index

Buttons / Selections	
Method	Select a method from the drop-down list.
Group Table	Display table: CV Group Index.
	Enabled only for the method: Custom assign Group to Spectra
Group Plot	Display plot: CV Group Index.
	Enabled only for the method: Custom assign Group to Spectra
OK	OK
Cancel	Cancel
Number of	
Groups	
Spectra per	
Group	
Start at Character	Used for Spectra Name
	Default is 1, the character comparison starts at the first character. (e.g. Start at
	Character=10 then all Spectra names that are shorter than 10 characters like
	Name xy, Batchor, r are grouped into r group.
Property	
Number of	
Segment	
Number of	Used for Spectra Name
Characters	Default is 500 characters, up to 500 characters are compared.
Short form	Enabled : e.g. 1-5
	Disabled: e.g. 1,2,3,4,5
List to Clipboard	The group list is copied to the clipboard.
Highlight Group	All spectra of a group are highlighted red in NIRCal-plots.
Plot Group	Select a group and plot

After creating or changing the groups, the CV calculation should be performed again.

CV Methods

One leave out (FCV)

Each spectrum represents a group: Full Cross Validation.

Alternate

The spectra are grouped successively by increasing number (1st spectrum to the 1st group, 2nd spectrum to the 2nd group, etc.).

Method				Group <u>T</u> able		OK	
Alternate			- □	Group Plot		Cancel	
			+ Pro	+ Property Acteone vapore pre			
			* N.	mber of Sean	nonte	20	
Sta	e ctra per critoup et at Character		1	No	imber of Char	acters	500
010			·	-		00000	Apply
ŧ.	Group			Size	Spectra	V s	hort form
1	Alternate	Group	1	2	1,11.		
2	Alternate	Group	2	2	2,12.		
3	Alternate	Group	3	2	3,13.		
4	Alternate	Group	4	2	4,14.		
5	Alternate	Group	5	2	5,15.		
6	Alternate	Group	6	2	6,16.		
7	Alternate	Group	7	2	7,17.		
8	Alternate	Group	8	2	8,18.		
9	Alternate	Group	9	2	9,19.		
10	Alternate	Group	10	1	10		

The number of Groups or the number of Spectra per Groups can be changed by clicking on the + or - symbols.

Number of Groups	27	+
Spectra per Group	3	+

The number of Groups and Spectra per Groups are depending on each other.

Sequence

The spectra are grouped with consecutive number (1st to 3rd spectra to the 1st group, 4th to 6th spectra to the 2nd group, etc.).

Me	thod				Group <u>T</u> able		ОК
Se	equence				<u>G</u> roup Plot		Cancel
Nu Spe	mber of Group: ectra per Group	s p	10	+ Pro + Nu	operty Acted mber of Segn	ine vapo nents	re pre: 💌 20
Sta #	rt at Character Group		Jr.	Nu Size	mber of Char Spectra	acters	<u>Apply</u>
1	Sequence	Group	1	2	1-2.		
2	Sequence	Group	2	2	3-4.		
3	Sequence	Group	3	2	5-6.		
4	Sequence	Group	4	2	7-8.		
5	Sequence	Group	5	2	9-10.		
6	Sequence	Group	6	2	11-12.		
7	Sequence	Group	7	2	13-14.		
8	Sequence	Group	8	2	15-16.		
9	Sequence	Group	9	2	17-18.		
10	Sequence	Group	10	1	19		
List	to <u>C</u> lipboard	<u>H</u> ighli	ght Group	<u>P</u>	ot Group	1	Help

The number of Groups or the number of Spectra per Groups can be changed clicking on the + or - symbols.

Number of Groups	27	-+
Spectra per Group	3	+

The number of Groups and Spectra per Groups are depending on each other.

Random

The spectra are grouped randomly.

MI	ethod			Group <u>T</u> able	ОК
JR	andom			<u>G</u> roup Plot	Cancel
Nı Sp	umber of Groups vectra per Group	5	+ Pr	operty Acteon	e vapore pre: ents 20
St	art at Character	þ	Size	mber of Charac	oters 500 Apply
1	Random Gro	un l	4	6.8.10-1	1.
2	Random Gro	up 2	4	3-4,13-1	4.
3	Random Gro	up 3	4	1-2,7,15	•
4	Random Gro	up 4	4	5,9,16-1	7.
5	Random Gro	up 5	3	12,18-19	
Lis	t to <u>C</u> lipboard	Highlight Gr	roup E	lot Group	<u>H</u> elp

The number of Groups or the number of Spectra per Groups can be changed clicking on the + or - symbols.

Number of Groups	27	+
Spectra per Group	3	+

The number of Groups and Spectra per Groups are depending on each other.

The smallest number of Group is 2.

Property Segments

Num			Group Mot	Cance
10.94171	ber of Groups		opertu Acteor	ne vapore pre
Spec	stra per Group 4	± Ni	umber of Segm	ents 20
Start	at Character	Nu	umber of Chara	oters 500
				App
6	Group	Size	Spectra	short forn
1	Seg1(0.0 To 15.0)	3	1,18-19.	
2	Seg4(45.0 To 60.0)	3	15-17.	
3	Seg7(90.0 To 105.0	I) 3	12-14.	
4	Segl1(150.0 To 165	.0) 1	11	
5	Seg14(195.0 To 210	.0) 3	8-10.	
6	Seg17(240.0 To 255	i.O) 3	5-7.	
7	Seg20(285.0 To 300	.0) 3	2-4.	

For the selected property the min.-max. value range will be divided into Number of Segments (default: 20) Each spectrum, which has the value belonging to a segment, builds a group.

Segments without property value are empty (here e.g. concentration range from 5 till 10 %).

The cross validation calculates the groups for the selected property. Only one property must be selected.

Property Equal

Spectra with the same property value (concentration) selected for a group.

Each property is taken into account.

Me	ethod			Group <u>T</u> able		OK
P	roperty Equal			<u>G</u> roup Plot		Cancel
Nu	imber of Groups	5	+ Pro	operty Acteo	ne vap	iore pre: 💌
Sp	ectra per Group	4	+ - Nu	mber of Segr	nents	20
Sta	art at Character	1	No	mber of Chara	acters	500
						Apply
#	Group		Size	Spectra	V sł	hort form
1	0		3	1,18-19.		
2	300		3	2-4.		
3	250		З	5-7.		
4	200		3	8-10.		
5	150		1	11		
6	100		3	12-14.		
7	50		3	15-17.		
Lis	t to <u>C</u> lipboard	Highlight Group	E	lot Group		<u>H</u> elp

Spectra Name

Spectra with the same name are selected for a group.

The comparison will start from the 1st character (default), but it can be changed by the user.

The length of spectra name can be limited by: Number of Characters. Default: 500.

	emou		Group <u>T</u> able		OK
S	pectra Name		<u>G</u> roup Plot		Cancel
Nu	Imber of Groups 5	+ Pro	operty Acteo	ine vap	ore pre:
Sp	ectra per Group	+ - Nu	mber of Segr	nents	20
St	art at Character	Nu	mber of Chara	acters	500
					Apply
ŧ	Group	Size	Spectra	🔽 sh	ort form
1	Luftspektrum	1	1		
2	Aceton 300 mbar	3	2-4.		
3	Aceton 250 mbar	3	5-7.		
4	Aceton 200 mbar	3	8-10.		
5	Aceton 150 mbar	1	11		
6	Aceton 100 mbar	3	12-14.		
7	Aceton 50 mbar	3	15-17.		
8	Aceton 0 mbar	2	18-19.		
Lis	t to Clipboard Highlight Gro		lot Group	S.,	Help

Spectra Name (autom)

Spectra with the same name are selected for a group.

The comparison will start always from the 1st character.

The length of spectra name will automatically be determined.

200			Group <u>⊺</u> able	OK
S	pectra Name (autom.)		<u>G</u> roup Plot	Cancel
No	umber of Groups	+ - Pro	operty Acteo	ne vapore pre:
Sp	ectra per Group	+ - Nu	mber of Segr	ients 20
St	art at Character	Nu	imber of Chara	acters 8
ŧ	Group	Size	Spectra	▼ short form
1	Aceton 300 mbar	3	1-3.	
2	Aceton 250 mbar	6	4-9.	
3	Aceton 150 mbar	4	10-13.	
4	Aceton 50 mbar	3	14-16.	
		5 -1 -0	17-10.	
Lis	t to <u>C</u> lipboard Highlight Gro	pup P	lot Group	<u>H</u> elp

Custom assign Group to Spectra

Me	thod			Group <u>T</u> able	ОК
Custom assign Group to Spectra			<u>G</u> roup Plot	Cancel	
Nur	mber of Groups	18	E Pro	operty Acteo	ne vapore pre:
Spe	ectra per Group	1	÷ Nu	mber of Segr	nents 20
Sta	rt at Character	1	Nu	mber of Char	acters 500
					Apply
	Group		Size	Spectra	▼ short form
	1		3	1-3.	
2	2		3	4-6.	
3	3		4	7-10.	
1	4		3	11-13.	
5	5		3	14-16.	
5	6		2	17-18.	
List	to Clipboard	Highlight Group	P	lot Group	Help

For custom-defined grouping, open the Matrix CV Group Index with the button "Group Table".

	CV Group Index					
	All One					1
	All Spectra					
	Spectra					Ī
1	D (+)-Glucose Anhydr. SCMS 9702T048	1				
2	D (+)-Glucose Anhydr. SCMS 9702T048	2				
3	D (+)-Glucose Anhydr. SCMS 9702T048	3				
4	D (+)-Glucose Anhydr. SCMS 9710T058	4				
5	D (+)-Glucose Anhydr. SCMS 9710T058	5				
6	D (+)-Glucose Anhydr. SCMS 9710T058	6				
7	D (+)-Glucose Anhydr. SCMS 9803T009	7				
8	D (+)-Glucose Anhydr. SCMS 9803T009	8				
9	D (+)-Glucose Anhydr. SCMS 9803T009	9				
10	D (+)-Glucose Anhydr. SCMS 9806T057	10				
11	D (+)-Glucose Anhydr. SCMS 9806T057	11				
12	D (+)-Glucose Anhydr. SCMS 9806T057	12				
13	D (+)-Glucose Anhydr. SCMS 9811T073	13				
14	D (+)-Glucose Anhydr. SCMS 9811T073	14				
15	D (+)-Glucose Anhydr. SCMS 9811T073	15				
16	D (+)-Glucose Anhydr. SCMS-9702T048	16				
17	D (+)-Glucose Anhydr. SCMS-9702T048	17				
18	D (+)-Glucose Anhydr. SCMS-9702T048	18				
19	D (+)-Glucose Anhydr. SCMS-9710T058	19				

Group Index numbers define to which group a spectrum is assigned.

There are 4 different types of selection possible:

Group name	In C-Set	In CV-Group (CV Group Index > 0)
Unused Spectra	No	No
CV-unused Group	No	Yes
CV-permanent C-Set	Yes	No
CV-mutable V-Set	Yes	Yes

Spectra with Group Index zero and not selected in the C-Set: unused spectra.

Spectra with Group Index higher than 0, but the spectra are not selected in the C-Set build the CVunused Group.

Advantage of this group: outliers, which belong to a spectra group, can be removed from the C-Set without making a new spectra group. In case the spectra should be removed from this group, the Group Index should be edited to zero.

Spectra with Group Index zero and selected in the C-Set: **CV-permanent C-Set**. These spectra will **never be left out** from the calibration, for each calculation they will be used within the C-Set. Advantage of this group: spectra with extreme values (min., max.) can be permanently kept in the C-Set, which is highly recommended.

Spectra with Group Index higher than 0 and selected in the C-Set: **CV-mutable V-Set**. These spectra are removed once out of the C-Set and used as V-Set during the CV cycles. These spectra are listed in the calibration protocol with their Group number/Group Index and the spectra belonging to each group.

CV Plots

It is possible to show the result of each calibration step (e.g. CV Predicted Property) and also the result of the final calibration (e.g. Predicted Property).

Pretreated Spectra (2D) Sugar... 💶 🗙 - C X Selected Prop 🚾 CV Property Residuur - 0 × Properties[xy] Saccharose % -Properties[xy] Saccharose % -Pretreated Spectra All Spect CV Property Residuum vs. Original Property Predicted Property vs. Original Property Calibration Spectra 0.0 alibration Spectra 0.04 Saccharose % 60 E n nr 9 Property tan 0.02 2 20 B-0.04 Predicted CV Prope 60 9000 40 60 80 10000 8000 7000 6000 5000 4000 10 94 Origin Original Property Saccha al Property Saccharose % 🐨 CV Regre - 0 × CV SECV (2) - 0 × 📬 NIR-Explorer: Sug - 0 × Project CV Regression Coefficients[1] Name CV SECV Instruments @ AL PCs All Properti All Spect 🖉 User PCs 🗄 🧰 Spectra Calibration PCs 🗄 🧰 Properties 100 Calibrations 🗄 🌯 🕻 unnamed 11 ME Journal Reflectance (mf,db1) Matrices SECV 2 4.00 7000 6000 8000 5000 10000 9000 4000 PCs 4 +

The Overview contains the following plots:

[1] The 1st C-Set property is chosen automatically for the plots.

Pretreated Spectra:

it is suggested to start the first calibration without pretreatment, but try later some pretreatments and combinations.

CV Property Residuum vs. Original Property:

property residuum = original property -predicted property. This plot shows for each sample group the property residuum for the calibration, which had this group in the V-Set during the CV. A small CV Property Residuum and a regression coefficient between original property and predicted property residuum close to 0 shows a stable calibration. Spectra with big deviations are possible outliers and removing them from the C-Set can improve the calibration.

- Predicted Property vs. Original Property: This plot shows the result of the final calibration for the spectra which are in the calibration set (unused spectra are not visible per default: it can be changed by the user under <u>Visibility</u>).
- CV Regression Coefficients [1] (called the property spectra in NIRCal 4.21) Shows the coefficients of the linear relationship between the NIR amplitudes (of the pretreated spectra) and the selected C-property.
 [1] refers to the 1st C-property. In general for each application only one C-Set property is allowed, so for each property a separate calibration is necessary (NIRCal could handle more, but NIRWare is designed for only one property / calibration for quantitative measurements).
- CV SECV; see further details under <u>Matrix CV SECV</u>.
 In general the first local minimum of CV SECV for the secondary PC selection will be taken, in

case several minimum SECV exist. Use the Factor Selection Wizard. The selected number of secondary PCs will be red.

Beside these plots there are several other plots to choose outlier spectra or to make a better view of the results. The plots under has the following plots:

- Property Residuum: The property residuum of each spectra showed with the final calibration.
- Spectra Residuals vs. Leverages: The final calibration result with the used primary PCs are showed for the calibration spectra.
- CV Spectra Residuals vs. Spectra Residuals: The spectra residual with the final calibration against the residuals with the CV calculation results are compared. Big difference shows, which spectra groups can be outliers.
- Spectra Residuum:
 = pretreated spectrum-reconstructed spectrum. The residuum of the final calibration is shown.
- CV Leverages vs. Leverages:
 The leverages for the final calibration against the CV leverages are ploted.
- CV Spectra Residuals vs. CV Leverages: Large residuals together with large leverage (points in the upper right square) are typical for possible outliers.

3.3 Selections

3.3.1 Calibration Method Selection

Menu:	Calibration / Metho	d /		_		_
	for <u>Principal Co</u> <u>Multiple Linear Regr</u> ^{CLU} for <u>Cluster</u> /	mr es	<u>sior</u> for	ent Regression / PLS for Partia	<u>al I</u>	Least Squares / MLR for
MIRCal ·	[NIR-Explorer: FromDB_9	õug	ar-P	etri1]		
File E	dit View Workspace Proje	ct	Cali	bration Wizard Tables Graphics Module	es	Window Help
Project	ruments ttra ierties irstions	b Fa Fa Fa Fa	 2 2 3 4 	Calibration Wizard Default Parameter		-92F1-DA7CEC9110AF}
E 1	5ugar			Method	۲	PCR Principal Component Regression
t¶≦ ⊕ <mark>(</mark> Mati	Journal ices	39.50		Validation Method Parameter))	PLS Partial Least Squares Regression MLR: Multiple Linear Regression
		æ		Pretreatments Change Data Sets	+	CLU Cluster SM SIMCA
				Calibration Protocol Calculate Calibration Protocol Show F8 Prediction Protocol	•	
			Q	Outlier Detection Q-Value Protocol	•	
			\$	Update F5 Calculate All Shift+F5		
1				Lifecycle	۲	(BUCHI)

MIRCal - [NIR-Explorer: From File Edit View Workspace	nDB_Sugar Project (-Petri1] Talibration Wiz	ard Tables Gr	aphics Modules Wind	low Help	
Project Instruments Spectra Properties Calibrations Saccharose	#' % 1 • 1 2	Name Saccharose Lactose	Method PCR PLS	Pretreatments none db1	Creator Login Administrator Administrator	
e Matrices Ready	•			[GUCHP	F

Example: For the calibration of Saccharose the method PCR is selected and for the calibration of Lactose PLS is chosen.

Icon:

3.3.2 Validation Method Selection

Menu: Calibration / Validation Method / ...

VS	for Validation Set
cv	for Cross Validation

The default method is VS (Validation Set). For quantitative calibrations CV (Cross Validation) is available.

📑 File Edit View Workspace	Project Calibration Wizard Tables Graphics Modules	Window Help	×
Project Instruments For Spectra Properties Calibrations Sugar Sugar	New Image: Calibration Wizard I		
I Matrices	Image: Change Data Sets	VS Validation Set	
	Calibration Protocol Calculate Calibration Protocol Show F8 Prediction Protocol		
	Outlier Detection		
	Update F5 Calculate All Shift+F5	_	
. Marine and a constant of the	Lifecycle	(DWAUD)	

3.3.3 Data Sets

Data sets are permanent selections that are stored and loaded with the project.

- Spectra Data Set
- Wavelength Data Set
- Properties Data Set
- PC Data Set

In case one of the above data set is left empty by the user the software automatically will create a selection with all data within the project (e.g. wavelengths property).

3.3.4 Edit Data Sets Dialog

Menu: Calibration / Change Data Set / Edit Data Sets...

Icon:

1

vame	ОК
Calibration Spectra	- Cancel
Calibration Spectra Validation Spectra Calibration Wavelengths Calibration Properties Calibration PCs	
C Disclusion	
Blockwise	
Custom [Snectra]	
 Custom [Spectra] [1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 1 	9-20, 22-23.
 Custom [Spectra] 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 1 ²arameter ²arameter ²arameter ²arameter 	9-20, 22-23.
Custom [Spectra] 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 1 Parameter Parameter Range from 1 to 24 Block select 2 leave 1	9-20, 22-23.

Under the drop-down list Name you can choose to edit the selections of the sets:

- Calibration Spectra
- □ Validation spectra □
- and more

NOTE

Click **Apply** after a selection, click **OK** to close the Dialog.

Invert: a simple tool to invert the selections previously made. It is very useful when dealing with large numbers of spectra.

Method

Monte Carlo Random	this selection is suggested where there is only one spectrum for each substance was measured but is not recommended (measurement mistake is not clear). 3 measured spectra of the same sample could be separated.
Sequence	e.g. 70% of the spectra are selected automatically. The measured spectra will be separated time dependent.3 measured spectra of the same sample can be separated.
Blockwise	to distribute 2/3 of all measured spectra into the calibration set, 6 spectra are selected to the C-Set and 3 left out for V-Set in the range from 1 to the last measured spectra. This is the most common selection method.
Custom (Spectra)	user selected by spectrum number. To separate two spectra blocks, a comma and space are used.

Parameter

Range from to	The first and the last spectra index.
Block select leave	Number of selected and left out spectra per block.
Amount %	Amount of selected spectra in %.

3.3.5 Spectra Data Set

Samples of known characteristics, both chemical and physical are used to generate calibrations. Measurement conditions should remain constant for all samples using the full spectrum range. Several sample from different batches should be collected for a robust calibration and each samples should be analysed in the laboratory with the classical method. Only acceptable samples can be used for the calibration. The measured spectra are normally divided into two sets.

```
    Calibration Spectra (spectra selected for the calibration) C-Set, about 2/3 of all measured spectra (min. 3). Only the C-Set spectra are used for the calculation of the principal components and the calibration limits.
    Generally, the calibration spectra should contain all "extreme information" to define the limits of acceptance. For quantitative calibration the spectra with the highest and lowest property values always belong to the calibration spectra.
```

Validation Spectra, about 1/3 of all measured spectra selected for the internal validation V-Set.

Only if a calibration treats the validation spectra equally to the calibration spectra, the settings are considered as OK

NOTE

These two groups of spectra should be:

□ independent from each other: all spectra of one sample should belong to the same set; □ no overlapping allowed.

It is **possible to leave out** some spectra from the C- and from the V-Set, these spectra are in the **Unused Set** = U-Set:

C-Set + V-Set + U-Set = All Spectra

The U-Set is visible in the calibration results, but will not influence the calibration and validation results e.g. will not be taken for the Q-Value calculation. The calibration protocol is stored within the calibration.

C- and V-Set can be selected by the user in different ways:

- in the NIR-Explorer;
- in the Property table;
- in the graphic.
Spectra Selection in the NIR-Explorer

Open NIR-Explorer

MIRCal - [NIR-Explorer: FromDB_	5olvent ID]				
🚰 File Edit View Workspace Proje	ect Calibration Wizard Tab	oles Graph	ics M	odules Window Help	_ 8 ×
Project	Name	Selected	Size	Selection as String	
Instruments	🛱 All Spectra	24	24	1-24.	
🕀 🛄 Spectra	🖉 User Spectra	0	24	nothing selected.	
	💋 Calibration Spectra	16	24	1-4, 7-10, 13-16, 19-22.	
	🖉 Validation Spectra	8	24	5-6, 11-12, 17-18, 23-24.	
	🖉 Residual Outlier Spectra	0	24	nothing selected.	
	🖉 Score Outlier Spectra	0	24	nothing selected.	
Wauelopatha	Property Outlier Spectra	0	24	nothing selected.	
	Leverage Outlier Spectra	0	24	nothing selected.	
Pretreatments					
Settings					
Journal					
🕀 🧰 Matrices 📃					
Ready				BUG	

Steps sequence:

1. Open the folder "**Calibrations**" by clicking on the box + in front of the folder or double clicking the folder

- 2. Open the active calibration, indicated by the red dot.
- 3. Open the folder "Data Sets".
- 4. Select "Spectra".

5. Select "**Calibration Spectra**" in the right part of the window. To open the Edit window press the right mouse button and click on **Edit Set** or double click on the selected line. Choose **Blockwise** with Block select 6 and leave 3, press **OK** for applying this selection.

For the "Validation Spectra" the Blockwise method is selected, press first Apply, than Invert and press OK to get the rest.

Name	OK
Calibration Spectra	Cancel
Method	
C Monte Carlo Random	
C Sequence	
Blockwise	
C Custom IC 1 1	
C Custom [Spectra]	
C Custom [Spectra] 9-28, 33-36, 49-72.	4
C Custom [Spectra] 9-28, 33-36, 49-72.	
Custom [Spectra] 9-28, 33-36, 49-72.	-
Custom [Spectra] 9-28, 33-36, 49-72.	-
C Custom [Spectra] 9-28, 33-36, 49-72.	2
C Custom [Spectra] 9-28, 33-36, 49-72. arameter	Clear
C Custom [Spectra] 9-28, 33-36, 49-72. Parameter tange from 1 to 80	Clear
C Custom [Spectra] 9-28, 33-36, 49-72. arameter ange from 1 to 80 lock select 6 leave 3	

Selection methods:

Monte Carlo Random: this selection is suggested, when only one spectrum for each substance was measured, which is not recommended (measurement mistake is not clear). For 3 spectra / samples this method is not suggested, while the 3 spectra can be randomly in C- or V-Set.

Sequence: e.g. 70 % of the spectra are selected automatically into the C-Set. 3 spectra / sample can be separated!

Blockwise: to distribute 2/3 of all measured spectra into the C-Set, 6 spectra are selected to the C-Set and 3 left out for the V-Set of the range from 1 to 80. This is the most common selection method.

Custom: spectra selected by spectrum number in the project. To separate two spectra blocks, a comma and space are used.

NOTE

When each sample has been measured three times, all three spectra should be designated to either the calibration or validation set.

Therefor it is ideal to use **Blockwise** selection e.g. if each sample was measured with 3 spectra block select 6 and leave 3 can be used. Blockwise selection is only recommended for qualitative calibrations.

Choose Blockwise with Block select 6 and leave 3, press OK for applying this selection for the C-Set. For the "Validation Spectra" the Blockwise method is selected, press first Apply, than Invert and press OK to get the rest.

Spectra Selection in the Property Table

Open the table Original Property in Menubar: Tables / Properties / Original:

Project		Sportes	
Instruments	All Spectra	Properties	Original
Properties Calibrations Calibrations Calibrations Data Sets Data Sets Spectra Wavelengths Properties Properties Pros Pretreatments Settings	Calibration Spectra Calibration Spectra Validation Spectra Calibration Spectra Calibr	Scores Loadings Eigenvalues B-Matrix X-PRESS C-Set Statistics V-Set Statistics	Pretreated Predicted Residuum Wavelength Regr. Regression Coefficients *
Matrices		Consistency Cluster / Property Property Box Radii	

	Original Property					
	All Properties					
	All Spectra					
_	Spectra	D (+)-Glucose, Anhydrous	D (+)-Glucose, Monohydrate	Mannitol	Sorbitol, granulate	Saccharose
1	D (+)-Glucose Anhydr. SCMS 9702T048	1.0000	0.0000	0.0000	0.0000	0.0000
2	D (+)-Glucose Anhydr. SCMS 9702T048	1.0000	0.0000	0.0000	0.0000	0.0000
3	D (+)-Glucose Anhydr. SCMS 9702T048	1.0000	0.0000	0.0000	0.0000	0.0000
4	D (+)-Glucose Anhydr. SCMS 9710T058	1.0000	0.0000	0.0000	0.0000	0.0000
5	D (+)-Glucose Anhydr. SCMS 9710T058	1.0000	0.0000	0.0000	0.0000	0.0000
6	D (+)-Glucose Anhydr. SCMS 9710T058	1.0000	0.0000	0.0000	0.0000	0.0000
7	D (+)-Glucose Anhydr. SCMS 9803T009	1.0000	0.0000	0.0000	0.0000	0.0000
8	D (+)-Glucose Anhydr. SCMS 9803T009	1.0000	0.0000	0.0000	0.0000	0.0000
9	D (+)-Glucose Anhydr. SCMS 9803T009	1.0000	0.0000	0.0000	0.0000	0.0000
10	D (+)-Glucose Anhydr. SCMS 9806T057	1.0000	0.0000	0.0000	0.0000	0.0000
11	D (+)-Glucose Anhydr. SCMS 9806T057	1.0000	0.0000	0.0000	0.0000	0.0000
12	D (+)-Glucose Anhydr. SCMS 9806T057	1.0000	0.0000	0.0000	0.0000	0.0000
13	D (+)-Glucose Anhydr. SCMS 9811T073	1.0000	0.0000	0.0000	0.0000	0.0000
14	D (+)-Glucose Anhydr. SCMS 9811T073	1.0000	0.0000	0.0000	0.0000	0.0000
15	D (+)-Glucose Anhydr. SCMS 9811T073	1.0000	0.0000	0.0000	0.0000	0.0000
16	D (+)-Glucose Anhydr. SCMS-9702T048	1.0000	0.0000	0.0000	0.0000	0.0000
17	D (+)-Glucose Anhydr. SCMS-9702T048	1.0000	0.0000	0.0000	0.0000	0.0000
18	D (+)-Glucose Anhydr. SCMS-9702T048	1.0000	0.0000	0.0000	0.0000	0.0000
19	D (+)-Glucose Anhydr. SCMS-9710T058	1.0000	0.0000	0.0000	0.0000	0.0000
20	D (+)-Glucose Anhydr. SCMS-9710T058	1.0000	0.0000	0.0000	0.0000	0.0000
21	D (+)-Glucose Anhydr. SCMS-9710T058	1.0000	0.0000	0.0000	0.0000	0.0000
22	D (+)-Glucose Anhydr. SCMS-9803T009	1.0000	0.0000	0.0000	0.0000	0.0000
23	D (+)-Glucose Anhydr. SCMS-9803T009	1.0000	0.0000	0.0000	0.0000	0.0000
24	D (+)-Glucose Anhydr. SCMS-9803T009	1.0000	0.0000	0.0000	0.0000	0.0000

The table consists of the spectrum number, the name of spectrum with batch number and the property membership (1 indicates: it belongs to a property, 0 indicates: it does not belong to a property).

Creating the **selection**: mark the first selected row with the mouse, **press the left button only once**. Press the "**Shift-key**" and **double click on the last marked row**. All selected spectra are highlighted in red colour.

		-	0/10/000000			-					
(Driginal	Pr	operty								
A	II Properti	es									
-	iii spectra										
		1	Spectra	D (+)-Gluc	ose, Anhydrous	D (+)-Glucos	e, Mon	ohydrate	Mannitol	Sorbitol, granulate	Saccharos
) (+) Glu		Class Salastian					0.0000	0.0000	0.0000	0.0
1) (+) Glu	~	Edit Selection					0.0000	0.0000	0.0000	0.0
) (+)-Glui G	m	Invert Selection					0.0000	0.0000	0.0000	0.0
1) (†):Glui		Load Selection fr					0.0000	0.0000	0.0000	0.0
) (+)-Glui	- 3	Load Selection In	um				0.0000	0.0000	0.0000	0.0
) (+) Glui		Copy Selection to	8	•	Col	•	0.0000	0.0000	0.0000	0.0
) (+)-Glu		Add Selection to		•	Row	×	1 Us	er Spectra		0.0
	(+)-dim		Remove Selection	from	+			2 Ca	libration Sp	ectra	0.0
	(+)-Gitu		Copy marked Cell	ls to	•			3 Va	lidation Spe	ctra	0.0
) (+)-Glu		Add marked Cells	to	•			4 Re	sidual Outli	er Spectra	0.0
) (+)-Gilui		Remove marked (Cells from	+			5 Sc	ore Outlier S	Spectra	0.0
) (+)-Glu		V(-)-01-					6 Pr	operty Outli	er Spectra	0.0
Ī) (+) Glu		Visibility		CHIT			7 Le	verage Outli	ier Spectra	0.0
) (+)-Glui	1	Fix Table Titles		Curr			0.0000	0.0000	0.0000	0.0
T) (†)-Glui		Options		•			0.0000	0.0000	0.0000	0.0
) (+) Glu	Ì۵.	Сору					0.0000	0.0000	0.0000	0.0
1) (+) Glu	1	Paste					0.0000	0.0000	0.0000	0.0
	- 1	_									•

To **remove** spectra from the selection: mark the selected row with the mouse, press the **left button** only once. Press the "**Ctrl-key**" and double click on the row.

When the selection is created, the spectra need to be copied to the calibration spectra and/or the validation spectra:

- 1. press the right mouse button in the graphic and **Copy Selection to Row Calibration Spectra**;
- 2. for setting the Validation Spectra select in the Popup-Menus the command **Invert Selection**. The rest of the spectra will be selected;
- 3. copy this selection in the Popup-Menus with the command Copy Selection to Row Validation Spectra.

NOTE

The menu "Copy Selection to" overwrites the existing selection in the data sets.

Add and Remove Selection from Datasets

Mark the spectra rows of the position to be changed in the selection. Press the right mouse button and add to or remove this selection from the desired data set. In this way, the selection made before will be enlarged / reduced with only the new selected data.

Spectra should not be designated to both, Calibration and Validation-Set.

Should this happen the system forces the user to make a clear decision. Clicking "Yes" will remove the overlapping spectra from the **Calibration Set** and keep them in the Validation Set.

A	Oundary (astual estanted Spectra) in Calibration Malidation Set (
11	1-6. (total 6/54)
	remove overlap from Calibration Set [Yes] ?
	remove overlap from validation Set [No] ?
	[auguang]

Spectra Selection in Graphic

A very practical way to make the spectra selection is in the calibration plot using the mouse. This is especially useful for the **quantitative** calibration because in the plot "Predicted Property vs. Original Property" the concentration distribution of the C- and V-Set is visible.

Click on the C-Set and the V-Set are empty, a message will appear. Confirm by clicking on the Yes button to get the Overview.

Enlarge the window "Predicted Property vs. Original Property" in the 3rd column. The "Predicted Property vs. Original Property" can be opened in the Menubar: Graphics / Properties / Original vs. Predicted as well:

Press the "Minus"-button on the keyboard to expand the X-and Y-ranges of the graphical display. Clear the selection made before by pressing the right mouse button and click on **Clear Selection**. To create selections in a graph, the function of the mouse must be changed from the Zoom function to the Window Select function.

Press the right mouse button and choose "Mouse Select" under "Options". The symbol of the

mouse will change from

Draw a box around the spectra with the mouse keeping the **left mouse** button **pressed**.

Draw boxes around all the other spectra you want to select by **holding the "Shift-key**". All selected spectra will be highlighted in red as soon as the left mouse button is released.

NOTE

While adding spectra DO NOT release the "Shift-key".

To remove spectra from the selection: Draw a box around the spectra you wish to deselect with the left mouse button pressed while holding the "Ctrl-key". Release the left mouse button still holding the "Ctrlkey". All remaining selected spectra will stay highlighted in red.

Origi Propertie	nal Property/Predicted s[xy] ethanol 💌	l Proper	ty (2D) FromDB_Ethanol 📕
Origi	inal Property	/ Pro	edicted Property
0	Edit Selection Invert Selection Load Selection from	E I	•68 • mageco-6996 Steat-ty-0.335+ 9(48)(y)+0 15 mageco-699+ Steat-ty-0.2552 8(48)(y)+0
rty ethan	Copy Selection to Add Selection to Remove Selection from	1 1 1	1 User Spectra 2 Calibration Spectra 3 Validation Spectra
dicted Prope	Visibility J View Fit ∓ Transpose Data Regression	F T	4 Residual Outlier Spectra 5 Score Outlier Spectra 6 Property Outlier Spectra 7 Leverage Outlier Spectra
Pre	Options Plot Settings Open Data as	P	90 100 perty ethanol
-			

- □ When the selection is created, the spectra can be copied to the calibration spectra, the validation spectra or the user spectra.
- 1. press the right mouse button in the graphic and **Copy Selection to Row Calibration Spectra**;
- 2. for setting the Validation Spectra select in the Popup-Menus the command **Invert Selection**. The rest of the spectra will be selected;
- 3. copy this selection in the Popup-Menus with the command Copy Selection to Row Validation Spectra.

NOTE

The function "Copy Selection to" overwrites the existing selection in the data sets.

Add and Remove Selection from Dataset

Mark the spectra, which should be removed from a selection.

Press the right mouse button and use "Add / Remove Selection to". This will enlarge or reduce the previously selection with the new spectra.

NOTE

By copying, adding and removing spectra to (from) the sets, **a homogeneous distribution** between calibration and validation spectra over the whole concentration range can be achieved.

3.3.6 Wavelength Data Set

The exact wavelength / wavenumber range depends on the instrument type used for the spectrum measurement and their settings (e.g. resolution).

The selected wavelength / wavenumber range depends on the application and the measuring option used. The calibration wavelengths define the spectrum range used by the mathematical algorithms, PCA, PCR or PLS.

Calibration Wavelengths are the wavelengths used to create the calibration model. Removing certain wavelengths from a calibration can lead to some improvement.

NOTE

In general, the calibration wavelength / wavenumber range should be as wide as possible.

Suggested wavenumber range for NIRFlex N-500 for measuring options with

- Solids and Liquids: $4'000-10'000 \text{ cm}^{-1}$;
- □ Fiber Optics: 4'500-10'000 cm⁻¹.
- □ Solids with Tablet Accessory: 6'000-11'520 cm⁻¹.

Selecting the Calibration Wavelengths in the NIR-Explorer

Project	Name	Selected	Size	Selection as String	
📄 Instruments	🛱 All Wavelengths	1501	1501	4000-10000.	
📄 Spectra	🖉 User Wavelengths	0	1501	nothing selected.	
Properties	Zelibration Wavelengths	1501	1501	4000-10000.	
Calibrations					
E 🛃 Cluster					
🖻 🔄 Data Sets					
- Spectra					
Wavelengths					
PCS					
ME lournal					
See Doguna					

To make the selection use the NIR-Explorer: double click "Calibration Wavelengths" and the Edit selection dialog appears

Name	OK
Calibration Wavelengths	
	Cancel
Method	
C Monte Carlo Random	
C Sequence	
C Blockwise	
Custom [Wavelengths]	
production de concession de	
4500-10000.	5
4500-10000.	
4500-10000.	2
4500-10000.	2
4500-10000.	2
4500-10000.	2 Chu
4500-10000. Parameter Range from 1 to 1501	Clear
4500-10000. Parameter Range from 1 to 1501 Block select 4 leave 2	Clear

Steps sequence:

- 1. Select Custom;
- 2. Type in the selection;
- 3. Click on OK.

NOTE

It is recommended to use only **custom** selection.

MIR-Explorer: FromDB_Solvent	ID			
🔄 Project	Name	Selected	Size	Selection as St
Instruments	🛱 All Wavelengths	1501	1501	4000-10000.
🕀 🦲 Spectra	🖉 User Wavelengths	0	1501	nothing selected.
Properties Calibrations Sector Data Sets Spectra Wavelengths	Le Calibration Wavelengths	1376	1501	4500-10000.
Properties PCs Thereatments Settings Journal Matrices				

In the project, the selected wavenumber as data points and range are shown (here: 1376 data points in the range of 4'500-10'000 cm⁻¹).

Selecting Calibration Wavelengths using Graphics

To review and select the suitable calibration wavelength range, several graphics can be used. An example is shown with the **pretreated spectra**, but it can also be done in the original spectra, loading or property wavelength regression graphic in the same way.

Open the pretreated spectra in Menubar: Graphics / Spectra / Pretreated.

When the graphic is opened, press the right mouse button and choose: $\ensuremath{\textbf{Options}}$ / $\ensuremath{\textbf{Mouse}}$ X-Axis Select.

Now it is possible to select the wavelengths with the mouse. The cursor position as wavenumber can be read in the status bar. Keep the left button pressed for selection. The selected range is marked with red color.

Copy the selected range into the calibration wavelengths with the right mouse button Popup-Menu: Copy Selection to / Calibration Wavelengths.

3.3.7 Properties Data Set

In qualitative methods the calibration properties are the substances that are required to be identified in the application.

In cluster calibration the mathematical algorithm of PCA will be applied for the selected properties. Normally all qualitative properties are used in the calibration.

In quantitative methods the calibration property (single property calibration) is the selected parameter which should be predicted.

Selecting the Calibration Properties in the NIR-Explorer

🜃 NIRCal - [NIR-Explorer: FromDB_Solve	nt ID]				
🚰 File Edit View Workspace Project C	alibration Wizard Tables	Graphics	Modu	ules Window Help	_ 8 ×
Project	Name	Selected	Size	Selection as St	
Instruments	All Properties	4	4	1-4.	
🕀 🧰 Spectra	💋 User Properties	0	4	nothing selected.	
🕀 🧰 Properties	Calibration Properties	0	4	nothing selected.	
E Calibrations					
📄 🔄 Data Sets					
Wavelengths					
PCs					
Settings					
Journal					
🗄 🧰 Matrices					
	1				(DUOUD)
кеаду					BULNI //

To make the selection use the NIR-Explorer: double click "**Calibration Properties**" and the Edit selection dialog appears.

Name	ОК
Calibration Properties	Cancel
Method	
C Monte Cado Bandom	
C Blockwise	
Custom [Properties]	
1-4	-
1-4	
1-4 Parameter	Clear
Parameter Range from 1 to 4 Block select 4 leave 2	

Steps sequence:

- 1. Select Custom;
- 2. Type in the selection;
- 3. Click on OK.

MIRCal - [NIR-Explorer: FromDB_Solver	nt ID]				
🚰 File Edit View Workspace Project C	alibration Wizard Tables	Graphics	Modu	les Window Help	_ & ×
Project	Name	Selected	Size	Selection as String	
Instruments	All Properties	4	4	1-4.	
🕀 🧰 Spectra	🖉 User Properties	0	4	nothing selected.	
	Calibration Properties	4	4	1-4,	
Luster					
Wavelengths					
Properties					
PCs					
📄 🕀 🧰 Pretreatments					
Settings					
Journal					
Ready					BUCHI //

In the project the selection is shown

Selecting the Calibration Properties using the Property Table

Plie Edit View Workspace Proje	ct Calibration wizard	ables Graphics Moduli	es window Help
	Name	Spectra	▶ pion as St
E Spectra	All Properties	Properties	Original
Properties Calibrations Calibrations Cluster Data Sets Wavelengths Properties Properties Properties Pros Pretreatments Settings	Calibration Pro	Scores Loadings Eigenvalues B-Matrix X-PRESS C-Set Statistics V-Set Statistics	Pretreated Predicted Residuum Wavelength Regr. Regression Coefficients
i∰ Journal ⊕ <mark>`</mark> Matrices		Consistency Cluster / Property Property Box Radii	

Open the property table.

10	riginal Property (Table) Sugar-QL.	nir					
	Original Property						
	All Properties						
	All Spectra						
	Speetra	D (4) Glucoro, Anhydrour	D (+) Glucosa Nonohudrata	Mannital	Corbital grapulate	Cambaraca	
1	D (+)-Glucose Anbydr SCMS 9702T048	1 0000	0.0000	0.0000	0.0000	0.0000	
2	D (4) Gluppro Inbudr, SCMS 97027048	1 0000	0.0000	0.0000	0.0000	0.0000	
-	D (4) Change Annual SCMS 97021049	1,0000	0.0000	0.0000	0.0000	0.0000	
	D (4) Chappen Annuar, SCMS 97421040	1 0000	0.0000	0.0000	0.0000	0.0000	
•	D (+) Glucose Annyur. SCMS 9/101038	1,000	0.0000	0.000	0.0000	0.0000	
•	D (+) Glucose Annyur. SCMS 97101038	1 0000	0.0000	0.0000	0.0000	0.0000	
•	D (1) Charges Jackada, CCMC 00007000	1,0000	0.0000	0.0000	0.0000	0.0000	
-	D (+)-Glucose Annyar. SCMS 58031005	1.0000	0.0000	0.0000	0.0000	0.0000	
8	D (+)-Glucose Annydr. SCMS 98031009	1.0000	0.0000	0.0000	0.000	0.0000	
9	D (+)-Glucose Anhydr. SCMS 98031009	1.0000	0.0000	0.0000	0.000	0.0000	
10	D (+)-Glucose Anhydr. SCMS 9806T057	1.0000	0.0000	0.0000	0.0000	0.0000	
11	D (+)-Glucose Anhydr. SCMS 9806T057	1.0000	0.0000	0.0000	0.0000	0.0000	
12	D (+)-Glucose Anhydr. SCMS 9806T057	1.0000	0.0000	0.0000	0.0000	0.0000	
13	D (+)-Glucose Anhydr. SCMS 9811T073	1.0000	0.0000	0.0000	0.0000	0.0000	
14	D (+)-Glucose Anhydr. SCMS 9811T073	1.0000	0.0000	0.0000	0.0000	0.0000	
15	D (+)-Glucose Anhydr. SCMS 9811T073	1.0000	0.0000	0.0000	0.0000	0.0000	
16	D (+)-Glucose Anhydr. SCMS-9702T048	1.0000	0.0000	0.0000	0.0000	0.0000	
17	D (+)-Glucose Anhydr. SCMS-9702T048	1.0000	0.0000	0.0000	0.0000	0.0000	
18	D (+)-Glucose Anhydr. SCMS-9702T048	1.0000	0.0000	0.0000	0.0000	0.0000	
19	D (+)-Glucose Anhydr. SCMS-9710T058	1.0000	0.0000	0.0000	0.0000	0.0000	
20	D (+)-Glucose Anhydr. SCMS-9710T058	1.0000	0.0000	0.0000	0.0000	0.0000	
21	D (+)-Glucose Anhydr. SCMS-9710T058	1.0000	0.0000	0.0000	0.0000	0.0000	
22	D (+)-Glucose Anhydr. SCMS-9803T009	1.0000	0.0000	0.0000	0.0000	0.0000	
23	D (+)-Glucose Anhydr. SCMS-9803T009	1.0000	0.0000	0.0000	0.0000	0.0000	
24	D (+)-Glucose Anhydr. SCMS-9803T009	1.0000	0.0000	0.0000	0.0000	0.0000	

Select the desired column.

	Original Property										
	All Properties										
	All Spectra										
	Spectra	Gucose Anhydro	D (+)-Glucose. Monohydrate	Man	ņitol	Sorbitol, granulate	Saccharose	Anteil-xx	Fat	Moisture	Prote
1	D (+)-Glucose Anhydr. SCMS 9702T048	Clear S	election	+	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
2	D (+)-Glucose Anhydr. SCMS 9702T048	🔄 📉 Edit Sel	ection		0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
3	D (+)-Glucose Anhydr. SCMS 9702T048	Invert 9	election	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
4	D (+)-Glucose Anhydr. SCMS 9710T058	Load S	election from	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
5	D (+)-Glucose Anhydr. SCMS 9710T058							1	0.0000	0.0000	
6	D (+)-Glucose Anhydr. SCMS 9710T058	Copy S	election to	P	C	.01 1	User Propertie	25	0.0000	0.0000	
7	D (+)-Glucose Anhydr. SCMS 9803T009	Add Se	lection to		R	.ow 🕨 2	Calibration Pr	operties	0.0000	0.0000	
8	D (+)-Glucose Anhydr. SCMS 9803T009	Remov	e Selection from	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
9	D (+)-Glucose Anhydr. SCMS 9803T009	Copy n	narked Cells to	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
10	D (+)-Glucose Anhydr. SCMS 9806T057	Add m	Add marked Cells to		0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
11	D (+)-Glucose Anhydr. SCMS 9806T057	Remov	e marked Cells from	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
12	D (+)-Glucose Anhydr. SCMS 9806T057			100.00	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
13	D (+)-Glucose Anhydr. SCMS 9811T073	Visibilit	у	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
14	D (+)-Glucose Anhydr. SCMS 9811T073	Fix Tab	le Titles Ctrl	Т	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
15	D (+)-Glucose Anhydr. SCMS 9811T073	Option	s .	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
16	D (+)-Glucose Anhydr. SCMS-9702T048				0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
17	D (+)-Glucose Anhydr. SCMS-9702T048	Copy			0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
18	D (+)-Glucose Anhydr. SCMS-9702T048	Paste			0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
19	D (+)-Glucose Anhydr. SCMS-9710T058	Export	Table		0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
10	D (+)-Glucose Anhydr. SCMS-9710T058		Tuble		0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
1	D (+)-Glucose Anhydr. SCMS-9710T058	Pretrea	tments	•	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
22	D (+)-Glucose Anhydr. SCMS-9803T009	🔛 Delete	Selected Spectra		0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	
23	D (+)-Glucose Anhydr, SCMS-9803T009	1.0	0.000	_	0.0000	0.0000	0.0000	10.0000	0.0000	0.0000	

Copy the selection into calibration properties.

3.3.8 PC Data Set

Principal Components or Loadings (old name Factors) are artificial difference spectra.

All PCs: Number of selected primary PCs.

User PCs: use this set as a selection buffer (e.g. for visibility).

Calibration PCs: these secondary PCs are used to create the calibration model. Calibration PCs or secondary PCs form a subset of the primary PCs of the calibration.

3.4 Calibration Wizard

3.4.1 Calibration Wizard

Menu: Wizard / Calibration Wizard

Icon:

227

The quality (robustness, sensitivity, selectivity, portability...) of a calibration for quantification and/or identification mainly depends on the data selections: choice of calibration and validation spectra, wavelength range, data pretreatments and PCs used.

The chemometric software NIRCal offers the calibration wizard for an easy and fast generation of calibrations without a profound understanding of chemometrics. The **automatic Calibration Wizard** guides the user. While the user only has to answer a few questions about the used samples, the installed sampling options or the expected quality of the calibration, the automatic calibration uses its knowledge base for selecting spectra, wavelength ranges or the number of PCs. The pretreatment selector for permutation and calculating several pretreatment combinations is an integral part of the calibration wizard. After all calibration is calculated the summary is documented and the five best calibrations are stored, all other deleted automatically. The calibration wizard can be started without any data selection before, but a precalculation can be useful: the wizard never selects properties! To do the data selection press the **Data Sets** button.

The Calibration Wizard with the **Advanced** option:

Substance -	Calibration Type	ОК
C paste	C identification	Cancel
C powder	Calibration Behavior	Help
C gas	 as precise as possible 	About
NIRFlex N-500	Solids _	< Simple
he active Calib	pration defines the Data Sets	Data Sets.
 remove de Fast Mode show calib keep prese exclude th exclude Keep Keep 	etected Outlier from C-Set and reduces data points up to 1 ration rules after initialisation elected Pretreatments for all is method CPLS ubelka Munk	IV-Set /5 calibrations i
 remove de Fast Mode show calib keep prese exclude th exclude Ki stop after build calibr use predefined additional 	etected Outlier from C-Set and reduces data points up to 1 ration rules after initialisation elected Pretreatments for all is method C PLS ubelka Munk 10 calibrations ration name with property nar d Wavelength Selection as setting	1 V-Set /5 calibrations i (• PCR mes
 remove de Fast Mode show calib keep prese exclude th exclude Ka stop after build calibr use predefined additional boundary fr 	etected Outlier from C-Set and reduces data points up to 1 ration rules after initialisation elected Pretreatments for all is method	1V-Set /5 calibrations i
 remove de Fast Mode show calib keep press exclude th stop after stop after build calibr use predefined additional boundary f Choose types Gap0 Gap2 Segment3 	etected Outlier from C-Set and reduces data points up to 1 ration rules after initialisation elected Pretreatments for all is method CPLS ubelka Munk 10 calibrations ration name with property nar d Wavelength Selection as setting for internal settings of derivatives and smoothing e.g. filter coefficients: 1,0 e.g. filter coefficients: 1,0	IV-Set /5 calibrations i • PCR nes Pretreatments 1,-2,1 (0,-2,0,0,1 -2,-2,-2,1,1,1

- 1. Select type of substance.
- Select type of calibration. Important for PCR/PLS or CLU method selection!
- 3. Select behavior of calibration.
- 4. Select used measuring option.
- 5. Start the wizard with OK.

Advanced Settings:

remove detected	Based upon outlier detection module with c=2.5, removed spectra are listed in			
Outlier from C-	the calibration protocol.			
Set and V-Set	Not in all cases it is advantageous to use this option.			
Fast mode	Every 5. wavelength value will be used to reduce the calculation time.			
reduces data	Not suggested for the end calculation! Use "Turbo Mode" (M) in plots e.g.			
points up to 1/5	Loading plot.			
show calibration	The used pretreatment, wavelength and method selection is showed; "Use all			
rules after	rules" with up to 2000 combinations are available (the time of calculation will			
initialisation	increase dramatically).			
keep preselected	The pretreatment or pretreatment sequence, used in the active calibration, is			
Pretreatments for	kept and the pretreatments from the wizard are added afterwards.			
all calibrations				
exclude this	For quantitative calibration the PLS or PCR method can be eliminated to			
method	reduce the calculation time.			
exclude Kubelka	Kubelka Munk will not be used if this option is checked.			
Munk	·			
stop after 10	Calculating 10 calibrations reduce the time for the calculation (mainly for			
calibrations	demo purposes).			
built calibration	Adequate for single property calibrations; to be switched off for a larger			
name with	number of properties.			
property names				

The **wavelength selection** can be influenced in one of these ways:

additional setting	The wavelength selection used in the active calibration, will be used additional to the predefined selection.
or	
boundary for internal settings	The wavelength selection is never bigger, as the selection in the active calibration. The boundary selection can also include gaps.

For the pretreatments of derivatives and smoothings there are 3 possibilities:

- Gap0: all data points are in the calculation;
- Gap2: each 3rd data point is in the calculations;

- Segment3: there is an additional 3 point smoothing (as3) for the Gap2 pretreatment.

With these selections predefined wavelength and pretreatment combinations and the calculation algorithm will be activated.

The wizard can be stopped with the keeping the **Esc** button pressed.

The Q-Value is a measure of the quality of the calibrations. It ranges from 0 to 1. The higher the Q-Value, the better the calibration.

Q-Value 1 is theoretical, in practice not achievable, if the value is higher as 0.75 (green), the calibration is acceptable, between 0.5-0.75 (blue) the calibration is useable, but not very accurate. Calibrations with Q-Value below 0.5 (red) should be inspected very carefully before routine use. The general observation is that qualitative calibrations yield considerably better Q-Value than quantitative calibrations. The Q-Value is a very good tool for the judgement of calibrations especially when comparing different calibrations.

After all calibrations have been calculated the results are summarized, the calibrations are sorted by the Q-Value. In addition to the calculated property the used secondary (calibration) / primary factors = PCs, the selected wavelengths regions, the used algorithm and pretreatments are listed as well.

It is possible to save or print this list by clicking on the appropriate buttons.

The ten best calibrations are kept in the project. The calibration with the highest Q-Value is set active. For this calibration the results are summarized using the Overview. It is possible to inspect the active calibration manually.

NOTE

It is the responsibility of the user to judge the calibrations and to release them for routine use. The Q-Value is one among other helpful tools for the judgement of the quality of the calibrations. It is important to test the calibration with independent well characterized samples

3.5 Pretreatments

3.5.1 Pretreatments

NIR spectra are influenced by various parameters. Variations of chemical and physical properties of samples as well as the measurement process and changes at the spectrometer will have an influence on the spectrum. These effects will mainly appear as problems with:

- overlapping absorption bands;
- non-linearity;
- light scattering;
- random noise;

One possibility to overcome these problems is to improve the signal by mathematical transformations of the spectra using pretreatments. They are used to improve the quality of the spectra and to minimize unwanted effects.

NOTE

Pretreatments do not change or affect the original spectra.

NIRCal provides a variety of data pretreatments, there are 34 pretreatment possibilities available in 6 groups. Each pretreatment can be combined with another and the **order of combination** is also important. Some pretreatments, which have a star "*" behind the name, are wavelength dependent. In this way there are a hugh number of combinations available. The size of a pretreatment sequence is only limited by the memory.

NOTE

According to our experience it is not suggested to use more than 3 pretreatments. Be aware of trashing your data to nonsense by misusing pretreatments.

Applying Pretreatments

The pretreatment selection is available in the Menubar: Calibration / Pretreatments.

The pretreatments can be selected in the toolbar via Icons as well; or select Pretreatments in the NIR Explorer and use the right mouse button; or select Pretreatments in the NIR Explorer, or in the Pretreated Spectra Plot and use the right mouse button.

Removing Pretreatment

D

D

with Undo Last it is possible to cancel the last pretreatment;

with Undo Sequence the whole sequence of pretreatments will be canceled.

3.5.2 Available Pretreatments

Pretreatment	Туре	Short
Normalization	by Closure*	ncl
	by Maxima*	nma
	by Sdev*	nsd
	to Unit Length*	nle
	between 0 and 1*	n01
	MSC Amplification * **	ma
	MSC Full* **	mf
	Divide by Spectrum	div
	Standard Normal Variate*	SNV
	Variance Scaling**	VS
Offset	Subtract DC*	dc
	Shift Negative to Zero*	n2z
	MSC Offset* **	mo
	Add constant	+C
	Mean Centering **	mc
	Subtract Spectrum	sub
Smoothing	Average 3 points	sa3, sa3g2
	Average 9 points	sa9, sa9g2
	Savitzky-Golay 9 points	sg9, sg9g2
Derivatives	1st BCAP 5 points	db1, db1g2
	1st Taylor 3 points	dt1, dt1g2
	1st Savitzky-Golay 9 points	dg1, dg1g2
	2nd BCAP 3 points	db2, db2g2
	2nd Taylor 3 points	dt2, dt2g2
	2nd Savitzky-Golay 9 points	dg2, dg2g2
	2nd Taylor 3 points, Segment5, Gap5 (Linear Filter - with fixed coefficients)	ds2, ds2g2
	3rd Taylor 5 points	dt3, dt3g2
Transformation	Absorbance Log ₁₀ (1/x)	log
	Absorbance inverse 1/(10 ^{-x})	ilg
	2nd Derivative/Logarithm	SDL
	Kubelka Munk	kmu
	Square x ²	sqr
	Reciprocal 1/x	1/s
Filter	Linear Filter - with editable coefficients	flt

* These pretreatments are wavelength dependent. The used wavelength is the selected calibration wavelength, or can be edited in the NIR-Explorer under Pretreatments. **** g2 stands for Gap2-filtering. These pretreatments have been adapted for improved performance for

N-500 spectra.

** **MSC** and **Mean Centering** are also depending on the **C-Set spectra selection**. NIRCal handles this dependency automatically. The necessary data is stored in the pretreatments itself so they can also operate automatically in the predictor of the application.

Legend of formula on the following pages: Capital Letters: Vectors Small Letters: Scalars T: Transmittance or Reflectance A Absorbance S: Spectrum h: delta X, distance of base point on the x-axis

3.5.3 Normalization

Normalization

The aim of normalization is to reduce baseline variations.

MSC is used to reduce or to increase baseline effects caused by scattering.

Tip

- for solids
- reduce particle size effects
- reduce pressure difference

Overview of all Normalization pretreatments:

* These pretreatments are wavelength dependent.

Normalization by Closure

Martens, Naes 1989, p. 337

Use

Reduction of baseline variations.

Туре

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Normalization by Maxima

Use Reduction of baseline variations.

Type:

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Normalization by Sdev

Division of each spectrum through the Standard Deviation of its Intensity Value within the Wavelength selection.

$$X_{nsd} = \frac{x}{Sdev(x)}$$

Use Reduction of baseline variations.

Type:

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Normalization to Unit Length

Vector Normalization to Unit Length.

$$VN = \frac{T}{\|T\|} = \frac{T}{\sqrt{T_i^2 + T_{i+1}^2 + \dots + T_n^2}}$$

Use Reduction of baseline variations.

Туре

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Normalization between 0 to 1

Use

Reduction of baseline variations.

 $\max |S - \min(S)|$

Туре

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

MSC Amplification

Use

Can increase baseline effect, can be good for particle size separation.

Туре

This pretreatment is not depending on the calibration wavelengths.

MSC Full

MSC Multiplicative Scatter Correction (full)

Use

Eliminates scattering effects. Reduction of baseline variations.

Туре

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Divide by Spectrum

When selecting this pretreatment the number of the spectrum, which should be used for the division, has to be entered.

In this way it is possible to enhance the differences in the data set.

NOTE

Having applied Divide by Spectrum the selected spectrum (spectrum No. 10 in this example) must not be put into the C-Set; its ordinate values will contain 1.0 only. The selected spectrum is copied into the pretreatment once. The selected spectra contains all previous pretreatments.

Туре

This pretreatment is not depending on the calibration wavelengths.

Standard Normal Variate

The SNV transformation centers each spectrum and then scales it by its own standard deviation (mean zero and variance equal to one). It corrects shifts on the ordinate.

 $Y_SNV = (y - mean(y)) / Sdev(Y)$

Use

Reduction of baseline variations.

Туре

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Variance Scaling

The spectra are divided by the standard deviation vector of the C-Set spectra. It is dependent on the C-Set selection.

NOTE

NIRCal handles the changing of the C-Set spectra automatically (by a refresh F5 or recalculation) and changes the the standard deviation and the result of the pretreatment. The standard deviation vector is stored in the pretreatment, so it can be used in the predictor and application.

Use

Can increase baseline variations, can be good for particle size separation.

Туре

This pretreatment is not depending on the calibration wavelengths.

3.5.4 Offset

Offset

The aim of Offset is to make baseline correction which caused by scattering.

* These pretreatments are wavelength dependent.

Subtract DC

The integral of the spectrum is subtracted as a scalar from the spectrum.

Formula:

Use

Baseline correction of spectra.

Type:

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Shift Negative to 0

In this example there is no effect because the spectra do not have any negative values. If there are negative values in a spectrum, a constant of the same absolute value as the largest negative value will be subtracted from the spectra. There will be no more negative values in the spectrum after the pretreatment has been performed; the minimum ordinate value will be zero.

Formula:

$$S = S - \min(S)\vec{1} \quad \Lambda \quad \min(S) \langle 0 \rangle$$

Use

For each spectrum the minimum -if it is smaller than zero- is substracted from the spectrum.

Type:

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

MSC Offset

Formula:

$$T = a\vec{1} + b\vec{T} + \vec{E}$$
$$MSC_{full} = \frac{T - a\vec{1}}{b}$$
$$MSC_{affset} = T - a\vec{1}$$
$$MSC_{amplification} = \frac{T}{b}$$
$$\overline{T} = Mittelwert$$
$$\vec{E} = Error$$

Use

Can increase the baseline shift, can be used for particle size separation.

Type:

The Calibration wavelengths are used when the pretreatment is added; the wavelength range can be changed afterwards in the pretreatment that can be different from the calibration wavelength.

Add constant

When selecting this pretreatment the constant to be added has to be entered first.

e.g. Constant = 0.3

This pretreatment can be used for the correction of systematic errors.

NOTE

To subtract a constant simply enter a negative constant.

[T = T + a f]

Mean Centering

The mean spectrum of the C-Set spectra will be subtracted from each spectra, only the deviation is remaining.

NOTE

Do not use Mean Centering as the last step in the pretreatment sequence when the Mean Centering has already been activated in the Calculation Parameters dialog box.

The Mean Centering defined in the Calculation Parameters box is calculated directly after the pretreatment sequence.

Туре

This pretreatment is not depending on the calibration wavelengths.

Subtract spectrum

When selecting this pretreatment the number of the spectrum, which should be subtracted from the other spectra, has to be entered.

In this way it is possible to enhance the differences in the data set.

Subtract Spectrum	×
Spectrum No #	ОК
10	Cancel
Subtract Spactrum	V
Subtract Spectrum	

NOTE

The scale factor can also be negative to add a spectrum.

Туре

This pretreatment is not depending on the calibration wavelengths.

3.5.5 Smoothing

Smoothing

Smoothing is used to reduce the noise level in spectra. However when using smoothing the spectral resolution will be affected. The smoothing function should be chosen according to the original data.

NOTE

Please choose the smoothing function carefully. No loss of spectral information should appear.

Overview of all Smoothing pretreatments:

Average 3 points

Formula:

Туре

This pretreatment is not depending on the calibration wavelengths.

Average 9 points

Formula:

$$gm_{i} = \frac{T_{i-1} + T_{i-3} + T_{i-2} + T_{i-1} + T_{i} + T_{i+1} + T_{i+2} + T_{i+3} + T_{i+4}}{9}$$

Туре

This pretreatment is not depending on the calibration wavelengths.

NOTE

The information loss can be very high.

Average Savitzky-Golay 9 points

Savitzky-Golay Smoothing (=zero-order derivative), 9 points, cubic

$$\int_{\text{accord}} (x_t) = \frac{-21f(x_{t+1}) + 14f(x_{t+1}) + 39f(x_{t+1}) + 54f(x_{t+1}) + 59f(x_t) + 54f(x_{t-1}) + 39f(x_{t-1}) + 14f(x_{t-1}) - 21f(x_{t-1}) + 23f(x_{t-1}) + 23f(x_{t-1})$$

Туре

This pretreatment is not depending on the calibration wavelengths.

3.5.6 Derivatives

Derivatives

A derivative is used to reduce baseline effects and to increase smaller absorption peaks (shoulder effect). The first derivative will eliminate a linear ordinate offset. The second derivative will eliminate a sloping baseline.

NOTE

When using a derivative the signal-to-noise ratio will decrease. Therefore often it will be necessary to combine it with smoothing.

Many derivative calculations are based on polynom fitting, therefore because of the mathematics involved, some smoothing will be applied anyway.

Wavelengths

-0.010

Wavelengths

1st BCAP

Formula:

$$f'(x_i) = \frac{f(x_{i+2}) + f(x_{i+1}) - f(x_{i-1}) - f(x_{i-2})}{4}$$

Туре

This pretreatment is not depending on the calibration wavelengths.

1st Taylor 3 points

Formula:

$$f'(x_{i}) = \frac{f(x_{i+1}) - f(x_{i-1})}{h^{2}}; \text{centered}$$

Туре

This pretreatment is not depending on the calibration wavelengths.

NOTE

More sensitive to noise than Savitzky-Golay 1st derivative, can be combined with smoothing (before or after).

1st Savitzky-Golay 9 points

More useful for spectra with very sharp absorption bands with high noise spectra, for detecting very small wavelength shifts.

Formula:

Savitzky-Golay derivative works with orthogonal polynoms (here cubic)

$$f'(x_{,}) = \frac{-86f(x_{,+4}) + 142f(x_{,+3}) + 193f(x_{,+2}) + 126f(x_{,+1}) - 126f(x_{,-1}) - 193f(x_{,-2}) - 142f(x_{,-3}) + 86f(x_{,-4})}{1188}$$

Туре

This pretreatment is not depending on the calibration wavelengths.

Literature:

Savitzky, Golay Analytical Chemistry Vol. 36, No. 8, July 1964, p.1627-1639, "Smoothing and Differentiation of Data by Simplified Least Squares Procedures"

NOTE

This cited paper contains some errors in some coefficients.

2nd BCAP

Formula:

$$f''(x_{i}) = \frac{f(x_{i+1}) - 2f(x_{i}) + f(x_{i-1})}{2}$$

Туре

This pretreatment is not depending on the calibration wavelengths.

NOTE

The result is mainly noisy spectra.

2nd Taylor 3 points

Formula:

SD = T''

$$f''(x_{i}) = \frac{f(x_{i+1}) - 2f(x_{i}) + f(x_{i-1})}{h^{2}}; \text{centered, "boxcar 2nd derivative"}$$

Type This pretreatment is not depending on the calibration wavelengths. **NOTE** The result is mainly noisy spectra.

2nd Savitzky-Golay 9 points

Formula:

Туре

This pretreatment is not depending on the calibration wavelengths.

Literature:

Savitzky, Golay Analytical Chemistry Vol. 36, No. 8, July 1964, p.1627-1639, "Smoothing and Differentiation of Data by Simplified Least Squares Procedures"

NOTE

This cited paper contains some errors in some coefficients.

2nd Taylor 3 Points Segment5 Gap5

Formula: See <u>Linear Filter</u>

Туре

This pretreatment is not depending on the calibration wavelengths.

3rd Taylor 5 points

Formula:

$$f'''(x_{i}) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^{3}}; \text{centered}$$

Туре

This pretreatment is not depending on the calibration wavelengths.

NOTE

The result is mainly very noisy spectra.

3.5.7 Transformation

Transformation

Transformation can be applied to modify the absorption peaks.

Tip: for liquids, in case the absorption peaks are not too high (thickness is too high). Not suggested for solids (scattering).

Overview of all Transformation pretreatments:

Absorbance

It is useful in case the Lambert-Beer law is valid (not too high absorption).

Formula:

 $A = \log (1 / T)$

Implemented as: $A = -\log_{10}(T)$ $= -\frac{\log_{e}(T)}{\log_{e}(10)}$ $= -0.434294481902\log_{e}(T)$ $T \in \mathbb{R}^{+}$

Type This pretreatment is not depending on the calibration wavelengths.

NOTE

NIRCal 5 calculates maximum 10 absorption units (means: R = 0.000000001).

Absorbance inverse

This is simply the inverse function of the ordinate transformation into absorbance; i.e. an absorbance spectrum will be transformed into transmission/reflectance.

Туре

This pretreatment is not depending on the calibration wavelengths.

Second Derivative / Logarithm

Formula:

$$SDL = \frac{A''}{\log(1+A)}$$

Type This pretreatment is not depending on the calibration wavelengths.

Kubelka Munk

Formula:

VM -	$(1 - T)^2$
12102 -	2 <i>T</i>

Туре

This pretreatment is not depending on the calibration wavelengths.

Square

Square is a tool for contrast amplification in spectra.

Formula:

$$SQ = S^2$$

Use Contrast enhancement.

Туре

This pretreatment is not depending on the calibration wavelengths.

Reciprocal

Formula:

$$S = \frac{1}{S}$$

Туре

This pretreatment is not depending on the calibration wavelengths.

3.5.8 Filter

Linear Filter

Linear filters allow the application of user defined pretreatments. For instance it is possible to apply average smoothing, derivative, low and high band pass filtering. The default linear filter in NIRCal contains a neutral setting of 1, 1.

near filter		
Filter coefficients and scale	(OK
1.1	*	Cancel
	+	

It is best to show examples for the explanation of linear filters.

The coefficients for the lienar filter will be explained for a Savitzky-Golay first derivative. In the original paper (Anal. Chem. 36, 1627-1639 (1964) the following formula was given using orthogonal cubic polynomes (nine points):

```
f'(x_{1}) = \frac{-86f(x_{1+4}) + 142f(x_{1+3}) + 193f(x_{1+2}) + 126f(x_{1+1}) - 126f(x_{1-1}) - 193f(x_{1-2}) - 142f(x_{1-3}) + 86f(x_{1-4})}{1188}
```

This formula will be transferred into the following coefficients for linear filters: -86, 142, 193, 126, 0, -126, -193, -142, 86, 1188

The coefficient for the highest x-value x(i+4) is -86, for the lowest x-value x(i-4) the coefficient is +86. The coefficient is 0 for that term, where there is no contribution; in this example it is in the middle, i.e. x(i+0). The last value of the coefficients is the Scale Factor. The sum will be divided by the scale factor.

As next example a three point average smoothing is used. The formula is: x'(i = (x(i+1) + x(i) + x(i-1)) / 3

The corresponding coefficients for this example are: 1, 1, 1, 3

Linear filters are very useful when spectra recorded with a different resolution have to be treated similarly to original spectra with e.g. only one third of data points (step from NIRFlex N-400 to NIRFlex N-500). For similar prediction results of calibrations smoothing and deriving functions should be adapted. In the following tables the linear filters for the basic smoothing- and derivative functions are summarized.

Derivatives	Linear Filter Coefficients
First Derivative BCAP (db1)	1,1,0,-1,-1,4
First Derivative Taylor 3 points (dt1)	1,0,-1,2 {= First Derivative Finite
	Differences}
First Derivative Savitzky-Golay 9	-86,142,193,126,0,-126,-193,-
points (dg1)	142,86,1188
Second Derivative BCAP (db2)	1,-2,1,2
Second Derivative Taylor 3 points	1,-2,1,2)*
(dt2)	
Second Derivative Savitzky-Golay 9	28,7,-8,-17,-20,-17,-8,7,28,462
points (dg2)	
Second Taylor 3 Points Segment5	1,1,1,1,1,0,0,0,0,0,-2,-2,-2,-2,-
Gap5 (ds2)	2,0,0,0,0,1,1,1,1,1,5
{Second Derivative Finite Differences	{1,0,-2,0,1,1}
*}	
Third Derivative Taylor 5 Points (dt3)	1,-2,0,2,-1,2
{Third Derivative Finite Differences}	{1,0,-3,0,3,-1,1}

*) due to upward compatibility reasons, identical to BCAP

{...} not included in NIRCal 5; for "Finite Differences" see: Norris and Williams in "NIR-Technology in Agricultural and Food Industries" p. 48

Smoothing	Linear Filter Coefficients
Average 3 Points (sa3)	1,1,1,3
Average 9 Points (sa9)	1,1,1,1,1,1,1,1,9
Savitzky-Golay 9 Points (sg9)	-21,14,39,54,59,54,39,14,-21,231

There are various ways for adapting Filters for the step between data of e.g. the NIRFlex N-400 and NIRFlex N-500. As a simple recipe we suggest to repeat each filter coefficient 3 times and adjust the scale or insert zero coefficients between the coefficients and also here adjust the scale. The recipe is illustrated for the second derivative BCAP (db2) below.

Number of data points: 500	Linear Filter Coefficients
500	1,-2,1,2
	Various alternatives:
1501	1,1,1,-2,-2,-2,1,1,1,3
1501	1,0,0,-2,0,0,1,1.2
1501	1,0,-2,0,1,0.7

For new NIRFlex N-500 datasets gap2 pretreatements have been introduced with NIRCal 5.2. The following tables show the linear filter coefficients for gap2 pretreatements.

Gap2 Derivatives	Linear Filter Coefficients
First Derivative BCAP Gap2 (db1g2)	1,0,0,1,0,0,0,0,-1,0,0,-1, 4
First Derivative Taylor 3 Points Gap2 (dt1g2)	1,0,0,0,0,-1, 2
First Derivative Savitzky- Golay 9 Points Gap2 (dg1g2)	-86,0,0,142,0,0,193,0,0,126,0,0,0,0,0,-126,0,0,-193,0,0,- 142,0,0,86, 1188
Second Derivative BCAP Gap2 (db2g2)	1,0,0,-2,0,0,1, 2
Second Derivative Taylor 3 Points Gap2 (dt2g2)	1,0,0,-2,0,0,1, 2 *)
Second Derivative Savitzky- Golay 9 Points Gap2 (dg2g2)	28,0,0,7,0,0,-8,0,0,-17,0,0,-20,0,0,-17,0,0,- 8,0,0,7,0,0,28,462
Second Taylor 3 Points (Segment5 Gap5) Gap2 (ds2g2)	$\begin{array}{c} 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0$
Third Derivative Taylor 5 Points Gap2 (dt3g2)	1,0,0,-2,0,0,0,0,0,2,0,0,-1, 2

Gap2 Smoothing	Linear Filter Coefficients
Average 3 Points Gap2 (sa3g2)	1,0,0,1,0,0,1,3
Average 9 Points Gap2 (sa9g2)	1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,9
Savitzky-Golay 9 Points Gap2 (sg9g2)	- 21,0,0,14,0,0,39,0,0,54,0,0,59,0,0,54,0,0,39,0,0,14,0,0,- 21, 231

3.6 Primary PCs

Primary PCs are used for the reconstruction of measured and pretreated spectra. The optimum number of primary PCs will be achieved if the spectra are described down to the limit of noise of the spectrometer. Primary PCs influence the spectra reconstruction and therefore are responsible for the residuum spectra and the residual.

The more primary PCs are used, the smaller the allowed residual of the calibration. **If too many primary PCs are selected, a calibration is overfitted**. In this situation only the calibration spectra will be identified correctly but not necessarily spectra of additional validation samples represented in the project.

If too few primary PCs are selected, the calibration might not be selective enough for the products (underfitted).

Tools for the selection of the optimal number of primary PCs:

The X-PRESS function shows from which PCs on, an additional PC does not improve the reconstruction of the spectra. The smallest number of PCs that still shows changes should be selected.

The Loadings / PCs themselves can be judged. PCs that appear noisy should not be used. The Residuum spectra can be checked. The amplitude of these spectra with the selected number of primary PCs should be about the same.

In this example, 3 primary PCs are necessary, each loading contains spectral information. PCs 4 to 10 are very small and have only noise with no useful information.

Check the number of primary PCs with the help of the graphic <u>X-PRESS</u> (in the Overview, or open the graphic in the Menubar : **Graphics / X-PRESS**) and Loading.

Additional tool:

The Eigenvalue of the PCs may provide information of the information content of the PCs. The reliability of the Eigenvalue is dependent on the applied data pretreatment.

The selected number of primary PCs should be adjusted and the calibration recalculated.

The more primary PCs are used, the smaller the allowed residual of the calibration.

If the primary PCs are selected correctly, the residuum spectra are similar for the C- and V-Set.

Example of correct primary PC selection:

□ If **too many primary PCs** are selected, a calibration is **overfitted**. In this case only the calibration spectra will be identified correctly but not necessarily the validation samples in the project.

Spectra Residuum All Spectra 0.0 Reflectance (SNV, db1) 0.00 -0.01 7000 10000 9000 8000 6000 5000 4000 Wavelengths Spectra Residuals vs. Spectra All Spectra 0.003 п 0.002 Residual 0.00 0.000 20 30 10 40 Spectra

Example of overfitting:

The residuals of the C-Set are much lower, as for the V-Set.

If too few primary PCs are selected, the spectra are underfitted, the calibration might not be selective enough for the products.
 Example of underfitting:

There are spectral characteristics, which are still not fitted, the residuum spectra are bigger, as the noise of the instrument.

NOTE

Avoid underfitting and overfitting! The PCs / Factor Selection Wizard can help with an estimate.

3.7 Adjusting Primary PCs (Calculation Parameters)

Menu: Calibration \ Parameter \ Calculation

Icon:

+

Calculation		-
🗇 Data Description [%]	99.9	OK
Num Primary PCs	3	Cancel
Advanced		
🗹 Mean Centering after Pr	etreatments	
a a a	2000	

The primary PCs are edited in the Dialog called Calculation Parameters. To check the result of the Setting of the Primary Principal components open the graphic Spectra Residuum: Menu: **Graphics** *I* **Spectra** *I* **Residuum**:

NOTE

Avoid overfitting: do not use too many principal components with little information.

Calculation	
Data Description [%]	To determine the number of primary PCs with a certain Data description (in %).
	Available for Cluster and PCR Method only.
Num Primary PCs	Change the value at Num Primary PCs to the number defined by the graphic " <u>X-PRESS</u> ". The limit of maximum number PCs is number of C-Set spectra.
Advanced	
Mean centering after Pretreatments	Sets the Mean Centering after finishing Pretreatments ON or OFF. All implemented algorithms (PCA, PCR, PLS) prefer a mean centering of the data.
	In very special situation it is possible to try the calibration without mean centering (e.g. SIMCA).
Max. Iterations	The maximum number of iterations for the internal PCA, PCR and PLS algorithm.
	When the maximum iterations are reached the algorithm will stop the calculation at the actual PC. All the following calculations will be done with this actual number of PCs instead the desired number of primary PCs.
	Tip: for very difficult data set, set the number of iterations up to 3'000. NOTE: Max. iteration limit is the number of C-Set spectra.

3.8 Secondary PCs

3.8.1 Secondary PCs for qualitative Calibration

The secondary / calibration principal components are responsible for the **separation of the different substances** and are used for the **tolerance radii calculation**. Several graphics or tables can help decide which principal components will lead to a successful separation of the properties.

The most comprehensive results are in the Menubar: View / Overview.

View Scores Graphic

Enlarge the Scores / Scores window in the Overview (3th column, 1st window).

There is a clear separation of the 4 different properties spectra according to the PC 1 and 2.

There is no separation with the scores of PC 4.

PC 1, 2 and 3 are secondary PCs, the PC 4 is not chosen for a secondary PC.

Scores against Spectra:

Enlarge the **Scores** window in the Cluster Method Overview (1st column, 2nd window). Good reproducible scores belong to PCs 1, 2 and 3, the PC 4 scores are not repeatable => PC 4 can not be used as secondary / calibration PC.

Property Box Radii:

Enlarge the **Property Box Radii** window in the Overview (1st column, 3rd window). Property Box Radii represents the scattering of the scores

- small values (normally below 0.1) mean repeatable
- □ scores, big values mean bad repeatability.

The scores of PC 4 are not repeatable, PC 4 can not be used as calibration PC.

Additional tool:

The **Property Score Disorder** values show how effective a particular PC separates different properties (substances) from each other. By scanning the score values in one direction of a PC and counting the changes between the membership of A or B, the disorder value is achieved. If a PC completely separates all calibration properties, **the smallest disorder value is: [the total number of calibration properties-1]**.

PCs with small disorder values are possible calibration PCs.

Summarising all the information available from the graphics for this example, the first 3 principal components (1-3) should be used as secondary PCs.

NIRCal - [Scores (3D) FromDB_Solvent ID] - 0 × Edit View Workspace Project Calibration Wizard Tables Graphics Modules Window Help - 18 × File PCs Properties --dichlormethane toluene ethanol acetone All Spectra Ready Plane -----Rotate BUCHI

The separation with 3 selected calibration PCs is visible in a 3 D graphics.

The selected number of secondary PCs should be adjusted and the calibration recalculated.

NOTE

In case more than 3 secondary PCs are selected, there is no possibility to see the clusters with the real radii in a 3D-Plot (more than 3D is not existent).

Try adjusting the xyz axis using the drop down list.

NOTE

To see the scattering in multi dimensions use Grafics / Scores / Multi 2D-Scatter.

3.8.2 Secondary PCs for quantitative Calibration

The secondary / calibration principal components are responsible for the **parameter calculation** and for the quality of the calibration. Several statistical values can help this decision.

The most comprehensive results are in the Menubar: View / Secondary PCs Selection.

Select the number of PCs, where:

- □ the in the plot regression coefficients[1] the PCs, which have similar constant value, are good for the calibration, big deviation indicates over fitting;
- the SEP Generalized Cross Validation is small (about the value of the standard deviation of lab method);
- □ the V-Set Bias is around zero;
- □ the Q-Value is high;
- the absolute value of the PCR B-Matrix is high (not available by PLS);
- □ the V- and C-Set regression coefficients are as close to one as possible;
- \Box the consistency is around 100;
- □ the V- and C-Set PRESS are as small as possible;
- □ the V- and C-Set SEP and SEE (SEC) are as small as possible and are similar (consistency).

Summarising all the information available from the graphics for this example, the first 3 principal components (1-3) should be used as secondary PCs.

It is possible that different numbers of PCs are ideal for different selection criteria. In this situation the different secondary PCs should be adjusted, the calibrations recalculated and the results compared.

In general for the C-Set a higher number of PCs always improve the result. For the V-Set, after a certain number of PCs the result can be even worse. The optimum should be selected.

The selected number of secondary PCs should be adjusted and the calibration recalculated.

Note: The **PLS** algorithm calculates the PC's with the highest correlation to the property values, that means the **secondary PC selection can not have a gap**. The real selection is always "**1 to the last selected**". For 1-2, 4-7 secondary PC's selection the internal used secondary PC's are 1-7 due to the PLS algorithm. This allows easy switching between the methods form PCR to PLS and back without losing the PC selection.

3.9 Secondary PC Selection

The number of secondary PCs is limited by the number of primary PCs. From this number of PC any number can be selected using the NIR-Explorer or the Edit dta Set dialog.

NOTE

In PLS a secondary PC selection like in the PCR or CLU is not possible, NIRCal uses all PCs from PC 1 to the last selected PC as secondary PCs.

3.9.1 Secondary PC Selection using NIR-Explorer

<table-of-contents> File Edit View Workspace Project</table-of-contents>	Calibration Wizard	Tables Gr	aphics	Modules Window Help
Project	Name	Selected	Size	Selection as St
- instruments	All PCs	4	4	1-4.
- Spectra	🖉 User PCs	0	4	nothing selected.
Properties	Calibration PCs	3	4	1-3.
Closter Closter Data Sets Spectra Wavelengths Properties PCs Pretreatments Settings Journal Matrices				

By double clicking on **Calibration PCs**, the selection dialog appears

	OK
Calibration PCs	Cance
Method	-
C Monte Carlo Random	
C Sequence	
C Blockwise	
 Custom [PCs] 	
Parameter Pange from 1 to 4	Clear
Parameter Range from 1 to 4 Rock select 4 leave 2	Clear Invert

Steps sequence:

- Select Custom;
 Type in the selection;
- 3. Click on **OK**.

NIRCal - [NIR-Explorer: FromDB_Solve	ent ID] Calibration Wizard	Tables G	anhice	Modules Window	Help
File Edit View Workspace Project Project Instruments Spectra Calibrations Cluster Cluster Data Sets Spectra Wavelengths Properties Properties Spectra	Calibration Wizard	Tables Gr Selected 4 0 3	Size 4 4 4	Modules Window Selection as St 1-4. nothing selected. 1-3.	Help

In the calibration the selection is shown.

3.9.2 Secondary PC Selection using Edit Data Sets Dialog

Click on the icon: or open the Edit Data Sets dialog under the Menubar: Calibration / Change data Sets / Edit Data Sets.

			 OK
Calibration P(Cs		Cancel
Method			
C Monte Ca	rlo Rando	m	
C Sequenc	e		
C Blockwise	3		
G o	[[-US]		100
1170.			1
			7
Parameter			
Parameter Range from		to 3	Clear
Parameter Range from [Block select [to 3 leave 2	Clear

Select **Calibration PCs** from the drop down menu. Select **Custom**, **edit** the selection and press **Apply**.

NOTE

After setting the secondary principal components, the calibration should be recalculated.

3.10 PCs (Factor Selection Wizard)

Menu: Calibration / Change Data Sets / PC

F

	estimated	actual	OK.
Number of primary PCs	4	8	[
Secondary PC Selection	1.2	1-2.	Cance
niole : start with a high hui	nber of primary P	'Ls to use the estin	nation once.
Test Details	-PRESS Slope)	Ls to use the estin Ratio (Highest)	nation once. >2) test : 4

Under actual the current settings for primary and secondary PCs (Factors) are displayed.

Under **estimated** the wizard suggest an optimized selection. The selections are changed manually. See: <u>Adjusting Primary PCs</u> and <u>Adjusting Secondary PCs</u>.

NOTE

Icon:

The estimated selections can only be smaller then the actual selections in the current project. Therefore it is recommended to change the selections for the PCs to a **relative high value**.

Related Topic: SIMCA, Transform Cluster to SIMCA

3.11 Blow Up Limits

Menu: Calibration / Parameter / Blow Up Limits

lcon:	
-------	--

F

The dialog is different depending on whether a quantitative or qualitative method is selected. They can be used for the fine tuning of the calibrations.

3.11.1 Blow Up limits quantitative calibration

_imits		OK
Residual	2	Cancel
Score	1.05	

Limits

- Residual The maximum residual, allowed for the application is determined by two (2) times the maximum residual of the calibration set. The default value is 2 and can be edited by the user.
- Scores The calibration spectra "maximum and minimum Scores x Blow Up limit" are used for possible score outlier detection in the prediction protocol. Possible outliers are searched with the secondary PCs. The default value is 1.05 and can be edited by the user.

3.11.2 Blow Up limits qualitative calibration

imits	D OK
Residual 2	Cancel
Score 1.05	Badius
Radii 1	Formula 1

For a qualitative calibration (Cluster, SIMCA) the dialog box additionally has the possibility to edit the Radii Blow Up limit and the Radius Formula.

Limits

Radii For all calibration spectra a radius is calculated and will be used for the application. These radius can be enlarge or decreased by editing the Radii Blow Up limit. The default value is 1 and can be edited by the user.

Reducing the radii will decrease the robustness, but increase the sensitivity of the calibration.

NOTE

Formula 1: it is suggested to **reduce** the Radii Blow Up limit (0<f<1) **for chemically different substances** to increase the sensitivity of the calibration.

Do not use higher blow up limit as 1 with Formula 1: it can cause overlapping.

Radius Formula

- 1 Formula 1: Radius = min(R1,(R1+R2)/2)/2 * Radii Blow Up
- 2 Formula 2: Radius = min(min(0.499*R1, R3*5*Radii Blow Up), R4*2.5*Radii Blow Up)
- 3 Formula 3: Radius = min(min(0.5*R2, R3*5*Radii Blow Up), R4*2.5*Radii Blow Up)

See details in Cluster.

NOTE

Formula 1 or 2 are recommended for Cluster calibration. Formula 3 is recommended for SIMCA.

Examples for different Formula and Radii Blow Up limits:

Formula 1; Blow Up limit = 1	Formula 1; Blow Up limit = 0.5

Reducing the radii results more selective calibration but increases the danger to get separated cluster for the same substances (Cluster / Property> 1).

3.12 Outlier Detection

*

Menu: Calibration / Outlier Detection / Advanced

Icon:

Outliers are spectra, that differentiate strongly from spectra of the same class. They can be detected

visually, check the spectra in the menu Graphics, in the calibration curve or in e.g. score plots;

statistically with the "Outlier Detection" module.

The principle of the calculation with the **advanced** "**Outlier Detection**" is explained for the residual outliers.

The average (mean) and the standard deviation (stdev) of the C-Set residuals are calculated. Each spectrum outside the confidence interval will be sorted as outliers, they are stored in the NIR-Explorer.

Judier	с	mean +/- stdev	Plot	OK
Spectra Residuals	2.4141	Recalculate		Cancel
Property Residuum	2.4141	Recalculate		
Leverages	2.4141	Recalculate		Check Uutlier
Scores	2.4141	Recalculate		V-Set
l Distribution				
Confidence level	99	Calculate c		
Degrees of freedom	44	Num C-Set Spec	otra	
nfo			•	
Confidence interval	mean +/- :	stdev * c 🚦	<u></u>	

This calculations can be made for the **C-Set** and/or **V-Set** as selected by the user.

The confidence interval e.g. for 99 % level (mean value +/- c * stdev) can be determined according the number of C-set spectra: **Calculate c**.

Press **Recalculate** beside the 4 different types of outliers to start the calculations. The found outlier type spectra are marked red after pressing Recalculate." By pressing **Plot**, the graphic is opened with scatter plot for easier spectra selection.

Outliers are marked with a sign and colored as shown in the plot legend.

Outlier spectra are listed in the NIR-Explorer under the spectra selection of the active calibration:

NIRCal - [NIR-Explorer: OQ-quantitative spectra.nir]	rd Tables Graphics Modul	es Windo	w He	× 미_ × 명
🔄 Project 📃	Name	Selected	Size	Selection as String
Instruments	🛱 All Spectra	74	74	1-74.
🕀 🧰 Spectra	🜽 User Spectra	0	74	nothing selected.
Properties	💋 Calibration Spectra	44	74	1-6, 13-18, 22-32, 36-41, 45-50, 60-65, 69-71.
🖻 🚔 Calibrations	💋 Validation Spectra	30	74	7-12, 19-21, 33-35, 42-44, 51-59, 66-68, 72-74.
	🖉 Residual Outlier Spectra	3	74	72-74.
Q-value, secondary/primary factors, wave select w	💋 Score Outlier Spectra	5	74	6, 26, 41, 55, 59.
	Z Property Outlier Spectra	1	74	41.
Saccharose %, 0.8423, 1-4./4, 4992-7152, 7404 Saccharose %, 0.8532, 1-3./6, 4992-7152, 7404 Osta Sets Wavelengths Wavelengths Properties Properties PCs Pretreatments	Leverage Outlier Spectra	2	74	6, 59.

Spectrum No. 72-74 are identified as residual outliers with this module (residuals: 0.0067-0.0075).

Spectrum No. 16 in the calibration set has the max. residual value (0.00449) and defines the limit for the calibration and application:

Max. allowed residual = Max. C-Set residual * 2

2: default Residual Blow up, can be adjusted by the user.

In this example, these spectra are not real residual outliers for NIRCal. In case these spectra would be real outliers, they can be selected as C-set spectra to entlarge the limits or eliminated from the calibration (U-Set = unused set).

There are two different types of outliers:

1. False measurement:

If for example air bubbles in liquid are measured or particles pollute the sample just in front of the optics of a probe, an outlier spectrum is measured. As three spectra are collected from every sample, it is easy to recognize these spectra. The spectra of one and the same sample should be similar. Nevertheless variations due to the production process will also manifest in the NIR spectra. Spectra originating from false measurements should be deleted or eliminated from the selection (unused).

2. Samples "out of specification":

If all spectra of one sample are different to spectra from other batches of the same material, the sample itself may be considered as an outlier. The difference can be caused by several parameters, for example changes in the production process, the type and/or the composition of single substances in a product were changed and/or varied, or the sample is polluted. The user has to verify what caused the difference and if the particular sample can still be used for its purpose.

Before outliers are deleted, a careful clarification of the reason should be made for the appearance of the outlier.

For **quantitative calibration** to find out if the reference value or the measured spectra must be regarded as an outlier, the score plots should be reviewed (Graphics / Scores / 2D-Scatter). Spectra breaking ranks, show clearly deviating scores and residuals (Graphics / Spectra / Residuals). Is that not the case, the reference value can be considered as false.

If there are big differences between the reference values and the predicted values, but the scores do not have particular deviations, with high probability, the outliers appear because of false reference values.

Groups of samples with systematically deviations

This effect can be seen from time to time when samples are evaluated their reference values have been determined in laboratories not using exactly the same reference methods. Here only an alignment of the reference methods can help.

Significantly different results depending on the chosen classification of the samples into the Cand V-Set

The number of used samples is too small, for instance because of not considered, hidden properties. Remedy: selective completion of the master data set that all possible variations flow into the calculation.

3.13 Q-Value

0

Menu: Calibration / Q-Value Protocol

Icon:

In NIRCal calibrations can be rated via the Q-Value. The Q-Value sums up all important criteria.

The Q-Value is part of the calibration protocol, there is no separate calculation necessary

After several calibration optimization and running the automatic calibration module (Step 2: Calibrate), there are several calibrations in the project. Sort the calibrations with a click on the Name or Q-Value.

The calibration are sorted with increasing or decreasing Q-Value.

NOTE

Keep only the best 2-4 calibrations and delete all others.

Further details can be found in the Calibration Protocol or in the description of the matrix Q-Value.

3.14 Change X-Unit Wavelength / Wavenumber

Menu: Project / Spectra / Change X-Unit to

Icon:

nm

Changes the x-axis units for the display of spectra to nm.

 cm^{-1} Changes the x-axis units for the display of spectra to 1/cm.

3.15 Convert and Import spectra from other instruments to DB

It is possible to **import** spectra measured with:

NIRVis and NIRFlex N-400 NIRLab N-200 other instruments (in case the wavelength range is similar)

into the NIRWare Database. In order to use those spectra with the **NIRFlex N-500** the spectral data **need to be converted** prior to saving them into the Database to reach the **compatibility**. The spectra should be **stored into the database**, the project should be closed, opened again and the **calibration** should be created.

These steps are explained in detail below.

Typically following conversions can be made with Büchi instruments:

	NIRVIS / NIRFlex N-400	NIRLab N- 200	Convert	NIRFlex N- 500
	Reflectance	Absorbance	>	Reflectance
[1/cm]	4'008 - 9996	3'999,67 - 10'001,1	>	4'000 - 10'000
Resolution	25	8		8*
Step	12	3,85696		4
Datapoints	500	1'557	>	1'501
Remarks	Values at 4000, 4004 are repeated from 4008 and 10'000 is repeated from 9996	Transformed by ilg (inverse logarithm) Pretreatment.		

* can be 16, but this is not suggested.

3.15.1 Procedure of Spectra Import

NIRCal 5 can work as File- and as Database - oriented software.

In case the **File - oriented** mode is used, the projects can be opened and stored as ".nir" Files (as NIRCal V 4.21), all function of editing and deleting of names, properties and values is allowed, also the use of "Find and Replace" module (like in NIRCal 4.21).

NOTE

Calibrations stored in file format cannot be used together with NIRFlex N-500.

This mode should be used to **copy** spectra together, which are stored in different projects before conversion.

Use "File/ Import/ Project" or "File/ Import/ Spectra".

NOTE

NIRLab spectra can cause problem by importing with the error: "Spectra are not compatible with Project Spectra because: not the same resolution in the Data Vector".

In this case export the spectra as JCAM.DX file, use "Fixed Format".

Import the spectra in an existing project as JCAM.DX file.

BCAP Series can be also imported using "File/ Import/ Project" and using "All Files(*.*)" as file type. The Spectra files ".Sxx" should be selected (not the Head files ".Hxx").

In **Database** - **oriented** mode the projects are **stored in the Database**, the function of editing in NIRCal 5 is strictly restricted. Deleting is allowed according the adjusted **Lifecycle** template.

3.15.2 Procedure of Spectra Conversion:

- 1 Open a new empty NIRCal project.
- 2 Import one NIRFlex N-500 template spectrum into this empty project.

NOTE

There are template spectra stored on the NIRSolution CD: Operation Manual / NIRFlex N-500 Template Spectra.

Choose a spectrum according the **the y-Unit** and **wavenumber range**, intended to use later with NIRFlex N-500.

3 Start the Module / Spectra Converter

- 4 Define the folder, where the source spectra are stored. Spectra which have *.nir, *.nsf, *.jdx, *.dx, *.jcm, *.spc and*.s?? file format, can be imported and transformed.
- 5 The spectra will be imported and converted into the project and the first template spectrum is automatically deleted from the project. At the end the following information is shown:

After conversion the spectra are available.

NOTE

E.g. each spectrum will have 1501 data points between 10.000 and 4.000 cm-1. In case some data are missing in the original spectra, the last measured value will be repeated, eg. by spectra measured between 10.000 and 4.500 cm-1, the value at 4.500 cm-1 will be repeated till 4.000 cm-1. To keep the spectrum as a constant graph (better for derivatives).

Do not use the "Spectra Converter" module twice in a project!

6 Check the name of the property in the project and make sure, that it has always the same spelling, as it is already used in the database. Consider capitalisation!

Adjust the property unit.

Unit: it is necessary to separate the unit from the property name (quantitative).

Deleting not necessary property and spectra from the project is still possible. Check the property values (Table Properties Original).

7 Save the spectra/project into the database with "File / Database / Save Project As..".

Attention: in case the project has huge number of spectra, this step can be time consuming.

(7a) A dialog appears with the property types (Quantification/Identification) selected automatically. Review the types before saving and make changes via the drop-down menu if necessary.

Name	Minimum	Maximum	Auto detected ty	pe
Moisture	33.95	43.85	Quantification	+
Fat	29.40	36.20	Quantification	-

The project will be closed automatically.

(7b) Edit the property name, - value and - unit in NIRWare **Sample Manager** in case it was not made in NIRCal 5 before saving the project into the DB.

8 **Reopen the NIRCal-project**.

9 Create the **calibration**.

In case a NIRCal 4.21 calibration is available, open the project with NIRCal 4.21 and copy the data selection (C-V-Set spectra, calibration wavelength) into the new NIRCal 5 calibration.

NOTE

Calibration wavelength: deselect wavelength range, which were not measured with the original spectra. By several instrument spectra in the same project use the smallest measured range.

NIRLab spectra have not integer wavenumber; the wave selection is after conversion rounded to integer.

In case the calibration was calculated with a special wave selection, it is suggested to make several trials to find the best wavelength selection.

Apply the **pretreatments** as used in the existing calibration.

NOTE

Pretreatment: use "Absorbance" (log) as additional **first** data pretreatment by NIRLab N-200 spectra, in case not "Absorbance inverse" (ilg) was used as first data pretreatment. This can be used for each calculation with the calibration wizard activating "Keep preselected Pretreatments for all calibrations".

NIRFlex N-400 spectra have **3 times more data points** after the conversion. Using the same data pretreatment give other result. In case e.g. "1st Derivative BCAP" was used in NIRCal 4, after the spectra conversion "1st Derivative BCAP Gap2" will nearly give the same result in NIRCal 5. The same with other derivatives and smoothing.

10 Perform the first calculation (Overview) and adjust the number of primary and secondary PCs according the existing calibration.

NOTE

Compare the results of the calibrations. The Q-Value should be different for quantitative calibration, while the calculation equation is improved that leads to slightly different Q-Values.

- 11 Increase the robustness of the calibration with spectra recently measured with NIRFlex N-500.
- 12 Optimize the calibration and save the best according the Lifecycle.
- 13 Close and save the project. The created calibration is now available in the **NIRWare Application Designer**.

3.15.3 Explanation of the Spectra Converter

Cubic spline function is used for the spectra conversion. The cubic function will be fitted on the data stepwise with 3rd degree polynom:

 $y(x) = a * x^{3} + b * x^{2} + c * x + d$

The Y-value for the desired X-values (wavenumber) are extracted from the resulting function curve.

The result is: not a linear connection of the points

but a spline function.

3.16 Calibration Handling

In a NIRCal project several calibrations can be handled. Their status can be different according the project is stored as **file** or into the **database**. The calibrations, stored in **file format** are always **editable**.

The calibrations which are stored in the database, underlying the Lifecycle and can have "Created" with "editing" or "Approved" status with "read-only" mode.

The first calibration in the NIRCal project is always the master calibration.

NOTE

The typical features of the master calibration:

- □ This calibration organises the spectra in the project: all spectra should be imported activating this calibration; otherwise they will not be stored in the project!
- Can have only "Created" LC mode; so it is always editable. It is not possible to put to "Approved" LC state and it can not be deleted with "Lifecycle / Delete";
- □ Can only be deleted if the project is deleted with "File/ Database/ Delete Project" (new feature in NIRCal 5.4).
- It is not suggested to use this calibration for an application: for tracability of the results use only approved calibrations for applications.

Approved calibrations, which are already used for application, are different from the approved calibrations, which are never implemented in any application. Approved calibrations, already used in application for measurement can not be deleted.

3.16.1 Calibrations without Lifecycle

Each new project in NIRCal 5 has an "**unnamed**" or master calibration, which is created automatically by importing spectra into the empty project.

This calibration and every calibration created with the menu "Calibration / New" has an "all" selection for the C-Set spectra, wavelength and property selection automatically and has "editable" status.

Running the calibration wizard, several new calibrations will be generated, the calibration with the highest Q-Value is active. The calibrations created by the wizard are **outside the normal Lifecycle**, **unless they are saved in the database!**

Calibrations, which are created but **not yet stored in the database** are editable and can be deleted by selecting them in the NIR-Explorer on the right side and pressing "Delete".

Rename the Calibration

The name of an **active**, **editable calibration** can be changed by clicking the right mouse button and selecting: "**Rename**". It is suggested to give a short, but clear name for each calibration; data as **extention** is useful for approved calibrations.

NOTE

The calibration name is part of the Calibration Protocol which is created during calculation. If the calibration name is changed afterwards, make sure to do a full calculation to get an updated calibration protocol.

NOTE

Give an appropriate name to the calibration, this allows a correct connection for the application. Rename is not available for Approved calibrations.

3.16.2 Calibrations with Lifecycle

After saving the project into the **database**, the calibrations are also stored and from that moment underlying the **Lifecycle**.

Calibration status in all Lifecycle Template "Unregulated, ER, ERES":

Allowed Lifecycle functions are visible, the grey fields are not available.

Note: Audit trail will log all important transitions.

Lifecycle: Edit

A calibration stored in the DB has the "**created**" status and " **read-only"** mode. The active calibration can be edited with the **Lifecycle / Edit**.

oject	Name	Value
Instruments Spectra Properties Calibrations Jil Sugars, mf-db1, 4.2-9. Jil Sugar-ID, mf-db1, 4.2-9.	ធំ Globally Unique ID ធំ Calb Lifecycle Sate ធំ Calb Version ធំ Calb Max Allowed Resid ធំ Properties Count ធំ Prop1 Name ធំ Prop1 Comment	{5623E363-831B-4EDA-90 created idle 2 ual 6.70594067046358E-03 4 Fructose
Billico Lifecycle	N 10	l Edit
Matrik 🛐 Calibration Proto	col Show FB	Save Copy
Predict Project	3	Next
Predict external.	🦼	Delete
Multi Predict Pro	ject	0
Multi Predict exte	ernal	1 Fine Sucrose
Application Predi	ict Project	The address
B Application Predi	ict external	0

There is no possibility to edit an approved calibration.

NOTE

If the **first calibration in the project is approved**, this calibration **can never be extended** with new spectra. Work around: use the spectra GUIDs to create the same project, the calibration protocol can be a valuable help.

Lifecycle: Save

Calibrations after optimization can be stored into the database with this LC function. It

is not available, in case the project is not yet stored in the database.

NIRCal tests each **quantitative calibration**, if only **one property** has been selected (single property calibration). In case there are several properties, the calibration is not stored, the user gets a warning. There is a question in case after a modification the calculation is not yet made:

Yes: the calculation is necessary for "Approved" status.

No: gives the possibility to save the calibration into the database without recalculation (quick save at the end of the day).

NOTE

Prediction Protocols are only available for calibrations, which are calculated and not modified after the calculation.

	New			★★目 送詞告 2002 A
隧	Calibration Wizard			→ 『 ○ の] 2 & 図 2 日
他	Default Parameter.			0 0 0 0
	Method			CC2-10AE74AAA7BD3
	Validation Method			
	Parameter		٠	
	Pretreatments			
	Change Data Sets		•	
圈	Calibration Protocol Calculate			
B	Calibration Protocol Show	F8		
	Prediction Protocol		•	Predict Project
	Outlier Detection			Predict external
Q	Q-Value Protocol			Multi Predict Project
(¢)	Update			🚱 Multi Predict external
	Calculate Al	Shift+F5		Application Predict Project
	Lifecycle			Application Predict external

Lifecycle: Copy

A copy of the active calibration can be created with this LC function. There is a request for calculation in case after a modification the calculation is not yet made.

The copy is automatically **saved** in the DB and set to **active** with the status: **Created**. The copy has the **same GUID**, as the original calibration, but a **higher version number**. For the copy of a calculated calibration the Prediction Protocols are available. Each calibration can be copied.

The copied calibration can be edited, modified and used later -after the necessary steps of saving- for the application.

Lifecycle: Next

To put a created calibration to the **approved** status, this LC function is used. If the calibration is not yet calculated, there is a request for calculation.

NOTE

It is not possible to put the first master calibration to the next status.

After the necessary calculation the calibration is stored and it's quality is tested. The Q-Value default limit is:

- 0.8 for qualitative and
- □ 0.6 for quantitative calibrations.

It is possible to put a calibration to a higher status with lower Q-value.

NOTE

Do not use a calibration with outliers!

Lifecycle: Delete

Calibrations, which are created but **not yet stored in the DB**, can be deleted by selecting them in the NIR-Explorer and pressing "Delete".

Calibrations, which are **already stored in the DB but not used for application**, can be deleted only with: **Lifecycle / Delete.**

The question about deleting should be answered before:

NOTE

It is not possible to delete the first master calibration. Calibrations, which are **embedded in an application**, can never be deleted.

NOTE

Calibrations, which are **already used for sample measurement** in the application, can be never deleted.

Optimize the Calibration

In order to optimize a calibration manually, the first calibration can be edited or copied: Lifecycle / Edit or Copy.

Running the calibration wizard, several new calibrations are available, the calibration with the highest Q-Value is activated.

A new empty calibration can be created: menu Calibration / New.

Save the Calibration for Application

The **adjustment of the best calibration** -mainly wavelength, pretreatment and PCs selection- **is suggested to be copied into the first calibration** in order to keep these adjustments for further changes. Unnecessary calibrations should be deleted before saving the project into the Database.

The best, activated and validated calibration should be stored for the application, for this the Lifecycle / Next should be used.

The calibration will get the Approved state using Lifecycle / Next.

NOTE

Only calibrations with Lifecycle state "Approved" are available for use in the routine applications for the operator user group.

The Designer and Administrator user groups can use created or checked calibrations for test.

Validate the Calibration

In the calibration process released samples with known properties should be measured together with the calibration samples. These samples should be placed in the V-Set of the calibration: **internal validation**.

When a calibration is created and released for the application, the application should be also validated: **external validation**. This is made with several **new**, **known samples**, which are not yet in the calibration: **operation qualification - OQ**. These samples should be measured also with the conventional laboratory method. In case the results of NIR and lab are the same (identification, qualification) or they are within the allowed tolerances (quantitative determination), the calibration can be used **for the routine measurement** till the next **performance qualification - PQ**.
Extend the Calibration

In case during the external validation there are **unacceptable differences -property value or residual-**, the **calibration should be extended** with the spectra of the external validation samples. These spectra are stored in the DB. The necessary steps are:

- editing the property values in the Manager Console / Sample Manager (see NIRWare manual);
- import the spectra into the original NIR-project;
- extend the calibration.

NOTE

Spectra import is suggested to make in the **activated first calibration**. Approved calibrations, which were already used in the application, can not be edited and modified anymore.

For creating an **extended calibration**, the new **imported spectra** should be selected as **C-Set** spectra, in this way the missing information is fully integrated in the new model. A copy of the optimized master calibration should be created with: **Lifecycle / Copy**. This copy should be stored in the database **Lifecycle / Next** and used for the **application**.

3.16.3 Project Handling

A project with existing calibrations can be stored under an other name in the Database.

NOTE

These calibrations are in this case only linked, but not copied!

Changes in a calibration causes changes in the calibration of both "projects" (after deleting a calibration in a project it will be lost in both projects).

In case with the same spectra e.g. for **different quantitative properties**, several calibrations have to be **created**, the spectra should be loaded into new projects. In each project calibrations for just one property are evaluated and optimized.

3.17 Protocols

3.17.1 Calibration Protocol Qualitative

Menu: Calibration / Calibration Protocol Calculate or Show

Icon:

Short Key: F8

The calibration protocol is an important validation report giving all information about the data selection and result of the chemometrics calculation. The calibration protocols are stored in the DB (or .nir project file).

Explanation of the content of the calibration protocols:

Cluster Calibration

The first section has the information about the user specific data selection (row 1-64).

1	Calibration Protocol			
4				
5		· · · · · · · · · · · · · · · · · · ·		
6	User	Customer System Maintena	ince	
7	Date/Time	27.01.2006 14:17:13		
8	Software	NIRCal V5.1 (Build 600)		
9	Project File Name			
10	Project Comment			
11	Project GUID	(DBADF1B8-3FA0-4970-BA	\00-2B49E741CB70}	
12	Calibration Name	ID-Amino-V3		
13	Calibration Comment	· · · · · · · · · · · · · · · · · · ·		
14	Calibration GUID	482178F5-F73E-4AA7-A9D	11-A86BA0F97C30}	
15	Calibration Version	3		
16	Calibration Lifecycle Sate	created editing		
17				
18				
19	Properties in Project	Ornitin-aspartat, L-Alanin, Propafenon-HCl, Cellulose, PEG, Stearic acid,		
20		Myristyl alkohol, Kollidon, Ketone Resin, Mg-Stearate, Verapamil-HCI. (total 11/11)		
21	Properties in Calibration Set	Ornitin-aspartat, L-Alanin, Pr	ropafenon-HCI. (total 3/11)	
22				
23		212		
24	Spectra in Project	25		
25	Spectra in Calibration Set	18		
26	Spectra in Validation Set	7		
27		· · · · · · · · · · · · · · · · · · ·		
28	Spectra in Calibration Set	1-2, 4-5, 7-8, 10-11, 13-14, 16-19,	21-23, 25. (total 18/25)	
29				
30	Spectra in Validation Set	3, 6, 9, 12, 15, 20, 24. (total 7/2	5	
31				
32	Spectra unused (U-Set)	nothing selected. (total 0/25)		
33				
and the second second				

Row	Name	Description
1	Calibration Protocol	Header
6	User	
7	Date/Time	Date and time of the calculation
8	Software	Current software version
9	Project File Name	Empty for database, name and place of the project for file
10	Project Comment	Normally empty. The comment section of the project.
11	Project GUID	Global Uniq IDentity of the project
12	Calibration Name	Name of the calibration
13	Calibration Comment	Normally empty
14	Calibration GUID	Global Unique IDentity of the calibration
15	Calibration Version	Indicates the modification of the calibration. The Calibration Lifecycle Version is incremented by Lifecycle copy (or by XML import to avoid duplicates).
16	Calibration Lifecycle State	not available anymore
19	Properties in Project	Name and number of all properties in the project
21	Properties in Calibration Set	Name and number of calibrated properties
24	Spectra in Project	Total number of spectra in the project
25	Spectra in Calibration Set	Total number of spectra selected in the C-Set
26	Spectra in Validation Set	Total number of spectra selected in the V-Set
28	Spectra in Calibration Set	Spectra selected in the C-Set
30	Spectra in Validation Set	Spectra selected in the V-Se

Row	Name	Description
32	Spectra unused (U- Set)	Spectra not used for calibration
34	Validation Method	Selected Validation method: Validation Set or Cross Validation (quantitative)

35		2					
36	C-Set Spectra	J					
37	Instrument type / serial	NIRFlex N500 /	400000003				
38	g-Unit / Measurements / Scans	Reflectance / 1	ł 16				
39		2					
40	¥-Set Spectra	J					
41	Instrument type / serial	NIRFlex N500 /	400000003				
42	g-Unit / Measurements / Scans	Reflectance / 1	/ 16				
43		P				1	
44	Spectra Resolution	4 1/cm					
45	Spectra y-Unit	Reflectance					
46		007 <u>89</u> 8			1		
47		1				1	
48	Wavelengths Project Set	4000-10000. (to	tal 1501/1501)				
49	Wavelengths Calibration Set	4200-9600. (tot	al 1351/1501)				
50	100	0.5					
51	Number of Data Pretreatments	2				1	
52	Data Pretreatment Sequence (short fo	a db1,nle					
53	Data Pretreatment Sequence (detailed	l 1. First Derivati	ve BCAP				
54	1.0 0000	2. Normalizatio	n to Unit Lengt	h", 4200-9600. (total 1351/1501)		
55		2				1	
56	Method	Cluster					
57	Maz Iterations	3000					
58	Mean Centering	yes					
59	Number of Primary PCs	2				1	
60	Secondary/Calibration PCs	1-2. (total 2/2)					
61							
62	Blow Up Parameter						
63	Residual Blow Up	2				1	
64	Score Blow Up	1.05					
65	Radii Blow Up	0.5					
66	Radii Formula	1					
67		() ()					
68	Maz C-Set Spectra Residual	0.00997207	-				
69	Maz Allowed Residual for Calibration	0.0199441					
70					1		

36	C-Set Spectra	Instrument statistic
37	Instrument type / serial	Used instrument type and it's serial number
38	y-Unit / Measurements / Scans	Measuring principle / Number of repeated measurements and scans of a spectrum
40	V-Set Spectra	Instrument statistic
41	Instrument type / serial	Used instrument type and it's serial number
42	y-Unit / Measurements / Scans	Measuring principle / Number of repeated measurements and scans of a spectrum
44	Spectra Resolution	Used data resolution
45	Spectra y-Unit	Measuring principle
48	Wavelengths Project Set	Measured wavelength range
49	Wavelengths Calibration Set	Selected wavelength range (selected datapoints / all data points)
51	Number of Data Pretreatments	
52	Data Pretreatment Sequence (short)	Short name or the applied data pretreatment
53	Data Pretreatment Sequence (detailed)	Full name of the applied data pretreatment

Row	/ Name	Description
56	Method	Selected calculation method / algorithm
57	Max Iterations	Calculation steps before default stop (max. 3000)
58	Mean Centering	Mean centering after pretreatment is activated: yes / no
59	Number of Primary PCs	Number of selected primary principal components
60	Secondary/Calibration PCs	Numbers of selected secondary principal components
62	Blow Up Parameter	Title
63	Residual Blow Up	Factor for residual limit calculation (default: 2)
64	Score Blow Up	Factor for score limit calculation (default: 1.05)
65	Radii Blow Up	Factor for radii limit calculation (default: 1)
66	Radii Formula	Formula for radii calculation: 1 / 2 (SIMCA: 3)
68	Max C-Set Spectra Residual	Highest value of the C-Set residuals
69	Max Allowed Residual for Calibration	Residual limit of the calibration for the application (max.* 2)

71	\$2.	
72	Q-Yalue	0.989553
73	Validation Method	Validation Set
74		
75	C-Set false identified	0
76	C-Set not identified	0
77	V-Set false identified	0
78	¥-Set not identified	0
79	Cluster Index	0
80	Property Uniformity	0.00517901
81	Property Interference	0.0537843
82		

72	Q-Value	Q-Value of the calibration
73	Validation Method	Selected Validation method: only Validation Set
75	C-Set false identified	Should be zero (indicates wrong user settings)
76	C-Set not identified	Should be zero (indicates wrong user settings)
77	V-Set false identified	Should be zero (indicates wrong sample or calibration)
78	V-Set not identified	Should be zero (residual or distance problem)
79	Cluster Index	(No. Cluster- No. Property): should be zero
80	Property Uniformity	Should be small: the spectra spreading in the clusters is uniform
81	Property Interference	Should be small: the clusters are independent from each other

83				0	3	1	2	
84	Property Overview	Num Cluster	C num Spec	V num Spec	U num Spec	J.	1	
85	Total Sum	3	18	7	0		1	
86	Ornitin-aspartat	1	6	3	0			
87	L-Alanin	1	6	2	0		3	
88	Propafenon-HCI	1	6	2	0	J	J	
89					200 040	1		
90	Property Separation	Q-	Q+	Interference	Extension	Distance	Nearest Prop	
91	Total Sum			0.161353	0.0873482	1.62702		
92	Ornitin-aspartat	Dmin		0.0547229	0.0295032	0.539138	L-Alanin	
93	L-Alanin	lmax Emax Dr	nin	0.0694985	0.0374692	0.539138	Ornitin-aspartat	
94	Propafenon-HCI		Imin Emin Dr	na 0.0371314	0.0203758	0.548747	Ornitin-aspartat	
95							3	
96	Property Outlier	C out Clu	V out Clu	C false Clu	V false Clu	C Resid big	V Resid big	
97	Total Sum	0	0	0	0	0	0	
98	Ornitin-aspartat	0	0	0	0	0	0	
99	L-Alanin	0	0	0	0	0	0	
100	Propafenon-HCI	0	0	0	0	0	0	
101								
102	Property Outlier U-Set		U out Clu		U false Clu		U Resid big	
103	Total Sum		0		0	÷.	0	
104	Ornitin-aspartat		0		0	1.	0	
105	L-Alanin		0		0	1	0	
106	Propafenon-HCI		0		0		0	
107					3		3	

Row	Name	Description
84	Property Overview	Number of clusters and selected spectra
85	Total Sum	Num Cluster = Total number of clusters, should be equal to the number of calibration properties
86	1st Property	Num Cluster = should be 1, the spreading of C-and V-Set spectra about 2/3-1/3
87	2nd Property	Num Cluster = should be 1, the spreading of C-and V-Set spectra about 2/3-1/3
88	3rd Property	Num Cluster = should be 1, the spreading of C-and V-Set spectra about 2/3-1/3
90	Property Separation	Information about the influence of the properties on the separation *

* Description of the property separation:

Q- = Imax, Emax and Dmin indicate bad influence on the substance separation Q+ = Imin, Emin and Dmax indicate good influence on the substance separation

Nearest Prop = Name of the property with the smallest distance

Judging criteria:

Distance = Mahalanobis distance to the closest property (spectrum to spectrum of the other cluster; see Property Adjacency)

Extension = The max. Mahalanobis distance of each cluster in the factor space (secondary principal components) Interference = Extension divided by distance

Imin / Imax = Extreme values regarding the parameter Interference

Emin / Emax = Extreme values regarding the parameter Extension

Dmin / Dmax = Extreme values regarding the parameter Distance

96	Property Outlier	Number of outlier spectra outside a cluster, in false cluster, residual too big in C- and V-Set
97	Total Sum	All should be 0
98	1st Property	All should be 0
99	2nd Property	All should be 0
100	3rd Property	All should be 0
102	Property Outlier U-Set	Number of outlier spectra outside a cluster, in false cluster, residual too big in U-Set
103	Total Sum	Normally the U-Set is empty, the sum is also zero

Row	Name	Description
104	1st Property	Normally all are zero
105	2nd Property	Normally all are zero
106	3rd Property	Normally all are zero

NOTE

Number of cluster of each property must always be 1. Number of any outliers in the C-and V-Set must always be 0.

109	Legend	- 2	
110	Number of Clusters	Num Cluster	
111	Num C-Set Spectra	C num Spec	
112	Num ¥-Set Spectra	V num Spec	
113	Num U-Set Spectra	U num Spec	
114	Distance to nearest foreign C-Set Spectra	Distance	
115	Name of nearest Property	Nearest Prop	
116	Num C-Set Spectra outside of Cluster	C out Clu	
117	Num V-Set Spectra outside of Cluster	V out Clu	
118	Num C-Set Spectra in false Cluster	C false Clu	
119	Num V-Set Spectra in false Cluster	V false Clu	
120	Num C-Set Spectra with Residual too big	C Resid big	
121	Num Y-Set Spectra with Residual too big	V Resid big	
122	Num U-Set Spectra outside of Cluster	U out Clu	
123	Num U-Set Spectra in false Cluster	U false Clu	
124	Num U-Set Spectra with Residual too big	U Resid big	
125	50	903 3	
126	20 20		

109- 124	Explanation of the legend	Short form
-------------	------------------------------	------------

Some statistics:

126		20. 10	1	8				
127								
128	C-Set Spectra Residual	Overview by C	-Set Properties	8				
129	10		1. E. 1					
130	C-Set Property	Min Residual	Min at Spec	Max Residual	Max at Spec	Mean	Sdev	
131	Ornitin-aspartat	0.00532228	23	0.00997207	1	0.00764126	0.00242659	
132	L-Alanin	0.00460561	21	0.00699607	5	0.00557426	0.00111922	
133	Propafenon-HCI	0.00337812	18	0.00643532	8	0.00454229	0.00112817	
134			8	8				
135				J				
136	C-Set Spectra Radii	Overview by C	-Set Properties	8				
137	2.0							
138	C-Set Property	Min Radius	Min at Spec	Max Radius	Max at Spec	Mean	Sdev	
139	Ornitin-aspartat	0.0746637	14	0.0774915	2	0.0763127	0.000929506	
140	L-Alanin	0.0718959	5	0.0767116	13	0.0748734	0.00223665	
141	Propafenon-HCI	0.0713045	8	0.0734389	19	0.0728965	0.000832398	
142		8						
143								

128- 133	C-Set Spectra Residual	Statistic of residual: minmax. residual with spectrum number, mean value and standard deviation
136- 141	C-Set Spectra Radii	Statistic of radii: minmax radii with spectrum number, mean value and standard deviation

145	Validation for C-Set Spectra										1		
146									Possible O	utlier Spectra	are marked with	aX.	
147	Name	No.	Set	Orig Prop	Pred Prop	Radius	Residual		Residual	Score	outside Clu	False Clu	(none) outside
148	Ornitin-aspartat	1	C	Omitin-asparta	Omitin-aspartat	0.0761098	0.00997207		0.01040.0001.6	0.00000		-1-1-04 CARDIN	
149	Ornitin-aspartat	2	C	Omitin-asparta	Omitin-aspartat	0.0774915	0.00965432						
150	L-Alanin	4	C	L-Alanin	L-Alanin	0.0721081	0.00696531						
151	L-Alanin	5	C	L-Alanin	L-Alanin	0.0718959	0.00699607						
152	Propafenon-HCI	7	C	Propafenon-H	Propafenon-HCI	0.0726464	0.00507873						
153	Propafenon-HCI	8	C	Propafenon-H	Propafenon-HCI	0.0713045	0.00643532						
154	P-HCI	10	C	Propafenon-H	Propafenon-HCI	0.0732926	0.00441988						
155	P-HCI	11	C	Propafenon-H	Propafenon-HCI	0.0732849	0.00445517						
156	L-Alanin	13	C	L-Alanin	L-Alanin	0.0767116	0.00535308						
157	Ornitin-aspartat	14	C	Omitin-asparta	Ornitin-aspartat	0.0746637	0.00993185						
158	Alanin	16	C	L-AJanin	L-Alanin	0.0760521	0.00472783						
159	Alanin	17	C	L-Alanin	L-Alanin	0.0761424	0.00479766						
160	Propafenon-HCI	18	C	Propafenon-H	Propafenon-HCI	0.0734116	0.00337812						
161	Propafenon-HCI	19	C	Proparenon-H	Proparenon-HCI	0.0734389	0.00348652						
162	alanin	21	C	L-Alanin	L-Alanin	0.07633	0.00460561						
163	Orn-Asp	22	C	Omitin-asparta	Omitin-aspartat	0.0765128	0.00558458						
164	Orn-Asp	23	C	Ornitin-asparta	Ornitin-aspartat	0.0766441	0.00532228						
165	Orn-Asp	25	C	Omitin-asparta	Ornitin-aspartat	0.0764544	0.00538246						
166	Name	No.	Set	Orig Prop	Pred Prop	Radius	Residual		Residual	Score	outside Clu	false Clu	(none) outside
167	Total No. of Spectra with X.	() · · · · ·	10000	100000000			2002-092.007-0012	0	0	0	0	0	0
\$68											1.0		
169		1. 18											
and the second se													

169		100 million (1990)												
170														
171	Validation for V-Set Spectra								ar vince			diana diana		
172	Contraction of the second second second								Possible 0	utiler Spectra	are marked with	aX.		1
173	Name	No.	Set	Orig Prop	Pred Prop	Radius	Residual		Residual	Score	outside Clu	false Clu	<none> ou</none>	Jtside Cl
174	Ornitin-aspartat	3	V	Ornitin-asparta	Ornitin-aspartat	0	0.0103079							1
175	L-Alanin	6	V	L-Alanin	L-Alanin	0	0.00644146							
176	Propafenon-HCI	9	V	Propafenon-H	Propafenon-HC	0	0.00735884							
177	L-Alanin	12	v	L-Alanin	L-Alanin	0	0.00532608							1
178	Ornitin-aspartat	15	v	Ornitin-asparta	Ornitin-aspartat	0	0.00999259							
179	Propafenon-HCI	20	V	Propaienon-H	Propalenon-HC	0	0.0035608							
180	Orn-Asp	24	v	Ornitin-asparta	Ornitin-aspartat	0	0.00567075							
101	Name	No.	Set	Orig Prop	Pred Prop	Radius	Residual	1.	Residual	Score	outside Clu	faise Clu	knone> or	utside Cl
182	Total No. of Spectra with X.			1000 1000 0000				0	0	0	0	0	0	Sharen a
\$83														
184		1000										1	1.1	

Information of the C-Set and V-Set spectra:

Row	Name	Description
145- 166	Validation for C-Set Spectra	List of C-Set spectra with predicted and original property, radii, residual. Number of possible outliers should be 0. .The last column shows the GUID of each spectra.
167	Total No.of Spectra with X	It should be all type zero.
171- 181	Validation for V-Set Spectra	List of V-Set spectra with predicted and original property, radii (0), residual. Number of possible outliers should be 0 except Scores outliers**. The last column shows the GUID of each spectra.
182	Total No.of Spectra with X	It is mostly all type zero, scores outliers should be carefully controlled.

** Explanation of **possible score outliers**:

These spectra are identified correctly, but they are possible outliers according to the score. As score tolerance the **min. and max. score** of the C-Set spectra are taken. These extreme values are multiplied by the **"Score Blow Up**", which is equal to 1.05 by default. But the **tolerance rings give a higher limit**.

Possible Score Outliers

: Score-range of the calibration in case score blow up=1.05

red / blue Circles : Cluster for substance A / B

⇒ Score-Range und Cluster are not identical

1 A/2 B : Spectra for Prediction, Possible Score Outliers

The spectrum 2B is not a real outlier, but spectrum 1A is dangerous: it is better to select into the C-Set.

3.17.2 Calibration Protocol Quantitative

Menu: Calibration / Calibration Protocol Calculate or Show

Icon:

Short Key: F8

The calibration protocol is an important validation report giving all information about the data selection and result of the chemometrics calculation. The calibration protocols are stored in the DB (or .nir project file).

Explanation of the content of the calibration protocols:

Quantitative Calibration

The first section has the information about the user specific data selection and similar, as for the Cluster calibration (row 1-58).

59	Blow Up Parameter		
60	Residual Blov Up	2	
61	Score Blow Up	1	
62			
63	Max C-Set Spectra Residual	0.00028157	
64	Max Allowed Residual for Calibration	0.00056314	
65	-		
66			
67	Q-Value V5	0.871706	
68	Validation Method	Validation Set	
69			
70	C-Set Residual too big	0	
71	V-Set Residual too big	0	
72			
73	Num Properties	1	
74	Rel. Consistency	0.0381583	
75	Weighted BIAS	0.00185398	
76	Validity	0.0004727	
77	Comparability	0.00027496	
78	Precision	0.0106114	
79	Weighted Accuracy	0.0557919	
80			
01	-12	35	

Result of the calculation

Row	Name	Description
59	Blow Up Parameter	Title
60	Residual Blow Up	Factor for residual limit calculation (default: 2)
61	Score Blow Up	Factor for score limit calculation (default: 1.05)
63	Max C-Set Spectra Residual	Highest value of the C-Set residuals
64	Max Allowed Residual for Calibration	Residual limit of the calibration for the application (max.* 2)
		Q-Value protocol
67	Q-Value V5	Q-Value of the calibration according version 5. The higher the Q-Value the best the calibration.
68	Validation Method	Selected Validation method: Validation Set or Cross Validation
70	C-Set Residual too big*	Number of C-Set spectra with too high residual = rejection of known (theoretically: 0 but always tested!)
71	V-Set Residual too big*	Number of V-Set spectra with too high residual = rejection of unknown (should be zero)
73	Num Properties	Number of properties in the calibration (should be always 1 for the application)
74	Rel. Consistency*	The C- and V-Set should have similar low standard error of prediction (BIAS corrected): Abs(SEC-SEP)/(Abs(SEP)+1). Should be close to 0
75	Weighted BIAS*	The absolute V-Set BIAS should be as close to zero as possible: Abs(Vset-BIAS)/Abs(Range)
76	Validity*	The V-Set regression coefficient should be near to 1: 1-VsetRegr. Validity should be close to 0
77	Comparability*	C- and V-Set should have similar high regression coefficient of prediction: Abs(CsetRegr-VsetRegr). Comparability should be close to 0
78	Precision*	V-Set standard error of prediction (BIAS corrected) should be low: SEP/Abs (Range)
79	Weighted Accuracy*	V-Set residual sum of squares=RSS should be low (not BIAS corrected): Abs(Sum((Orig-Predicted)^2)/Abs (Range)

* used with different weighting values.

82	Property Statistics	ethanol	
83			
84	C-Set BIAS	0	
85	V-Set BIAS	-0.0593272	
86	C-Set SEE (SEC)	0.39271	
87	V-Set SEE (SEP)	0.339566	
88	Consistency	115.65	
89			
90	C-Set Regression Coefficient	0.999252	
91	V-Set Regression Coefficient	0.999527	
92	C-Set Regression Intercept	0.117782	
93	V-Set Regression Intercept	0.212944	
94	C-Set Regression Slope	0.99852	
95	V-Set Regression Slope	0.998064	
96			
97	C-Set Orig. min	64	
98	V-Set Orig. min	65	
99	C-Set Orig. max	96	
100	V-Set Orig. max	94	
101	C-Set Orig. mean	79.5833	
102	V-Set Orig. mean	79.3333	
103	C-Set Orig. sdev	10.1575	
104	V-Set Orig. sdev	11.0393	
105			
106	C-Set Pred. min	64.1316	
107	V-Set Pred. min	65.2528	
108	C-Set Pred. max	95.8965	0.0
109	V-Set Pred. max	94.2257	
110	C-Set Pred. mean	79.5833	
111	V-Set Pred. mean	79.3927	
112	C-Set Pred. sdev	10.15	0.1
113	V-Set Pred. sdev	11.0232	
114	The second		

Property statistics

Row	Name	Description
84	C-Set BIAS	Always zero by definition.
85	V-Set BIAS	Average deviation between the predicted = NIR and original = lab method values. Should be as close to zero as possible (no systematic deviation).
86	C-Set SEE (SEC)	Standard error of estimation of the C-Set. Should be as small as possible, but comparable to the standard deviation of the laboratory method.
87	V-Set SEE (SEP)	Standard error of prediction of the V-Set. Should be as small as possible, but comparable to the standard deviation of the labor method.
88	Consistency	Relation between the standard error of estimation of C- and V- Set: SEC/SEP * 100. Should be around 100 (80-110).
90	C-Set Regression Coefficient	"r" shows, how well the predicted values of C-Set match the original values on average. Should be as close to 1 as possible (r > 0.9). <i>NOTE</i> :r is not r^2 (r-square), r can also be nagative.
91	V-Set Regression Coefficient	"r" shows, how well the predicted values of V-Set match the original values on average. Should be as close to 1 as possible (r > 0.9)
92	C-Set Regression Intercept	r= a + bx, where "a"= intercept of the C-Set. Should be as close to 0 as possible
93	V-Set Regression Intercept	r= a + bx, where "a"= intercept of the V-Set. Should be as close to 0 as possible
94	C-Set Regression Slope	r= a + bx, where "b"= slope of the C-Set. Should be as close to 1 as possible

Name	Description
V-Set Regression Slope	r= a + bx, where "b"= slope of the V-Set. Should be as close to 1 as possible
	Statistics of the original property values (labor method, X-axis)
C-Set Orig. min.	The smallest property value in the C-Set
V-Set Orig. min.	The smallest property value in the V-Set
C-Set Orig. max.	The highest property value in the C-Set
V-Set Orig. max.	The highest property value in the V-Set
C-Set Orig. mean.	The mean property value of the C-Set
V-Set Orig. mean.	The mean property value of the V-Set
C-Set Orig. sdev	The standard deviation of the property values in the C-Set
V-Set Orig. sdev	The standard deviation of the property values in the V-Set
	Statistics of the predicted property values (NIR, Y-axis). These values should be comparable to the similar values of the original property values.
	NameV-Set Regression SlopeC-Set Orig. min.V-Set Orig. max.C-Set Orig. max.V-Set Orig. mean.V-Set Orig. mean.C-Set Orig. sdevV-Set Orig. sdev

115	C-Set RSS	1.69643	
116	V-Set RSS	0.597645	
117			
118	C-Set Durbin-Watson	3.0593	
119	C-Set Durbin-Watson in range 1.5 to 2.5	No	
120	V-Set Durbin-Watson	2.54473	
121	V-Set Durbin-Watson in range 1.5 to 2.5	No	
122	6240		
123	C-Set Resid. min	-0.464557	
124	V-Set Resid. min	-0.328338	
125	C-Set Resid. max	0.625482	
126	V-Set Resid. max	0.59974	
127			
128	V-Set t-value	0.427962	
129	V-Set t-Test(n-1,2-tail) Confidence [%]	31.3514	
130			
131	C-Set n	12	
132	V-Set n	6	
133			

115	C-Set RSS	C-Set residual sum of squares = RSS should be low: Sum((Orig-Predicted property)^2) = Sum (e^2)
116	V-Set RSS	V-Set residual sum of squares = RSS should be low: Sum((Orig-Predicted property)^2) = Sum (e^2)
118	C-Set Durbin-Watson	dw=Durbin-Watson = Sum of consecutive/succesive Residual Difference Square / Sum of Residual Square LINK: <u>Durbin-</u> <u>Watson Factor Statistics</u>
119	C-Set Durbin-Watson in range 1.5 to 2.5	Is the dw value between 1.5 and 2.5? Answer: Yes or No
120	V-Set Durbin-Watson	dw=Durbin-Watson = Sum of consecutive/succesive Residual Difference Square / Sum of Residual Square
121	V-Set Durbin-Watson in range 1.5 to 2.5	Is the dw value between 1.5 and 2.5? Answer: Yes or No
123	C-Set Resid. min	Biggest negative deviation in the C-Set property values
124	V-Set Resid. min	Biggest negative deviation in the V-Set property values
125	C-Set Resid. max	Biggest deviation in the C-Set property values
126	V-Set Resid. max	Biggest deviation in the V-Set property values
128	V-Set t-value	Original property and the Predicted property are compared via a paired t-test to show if the results are statistically equivalent
129	V-Set t-value (n-1, 2-tail)	Significance level, where is no evidence for a difference between
Confi	dence (%)	the Original and Predicted property results
131	C-Set n	Number of C-Set spectra
132	V-Set n	Number of V-Set spectra

Explanation of V-Set t-test:

Original property and the Predicted property are compared via a paired t-test to show if the results are statistically equivalent.

$$t = \frac{\left|\overline{e}\right|}{s_{d} / \sqrt{n}}$$

where:

- e is the mean residual (original predicted property);
- d is the standard deviation of the residuals.

Example:

The two-sided critical value of students"t" e.g. at 5% significance level for n-1 degrees of freedom is protocoled as V-Set t (5%,n-1) and the calculated t as V-Set t-value. If V-Set t (5%, n-1) is greater than V-Set t-value, there is no evidence for a difference between the Original and Predicted results. NIRCal estimates and protocols the significance level, where is no evidence for a difference between the Original and Predicted results.

V-Set t-Test (n-1,2-tail) Confidence [%]: the higher the value the best the confidence of the V-Set results.

See reference: [Anthony C. Moffat, Andrew D. Trafford, Roger D. Jee and Paul Graham. "Meeting the International Conference on Harmonisation's Guidelines on Validation of Analytical Procedures: Quantification as exemplified by a near-infrared reflectance assay of paracetamol in intact tablets.", The Royal Society of Chemistry, Analyst, 2000, 125,1341-1351].

NOTE

- the V-Set spectra selection has a huge influence on the t-value;
- the t-test reacts also negative on calibrations with very small V-Set BIAS. The t-test for the C-Set has no sence, because the C-Set BIAS is per default 0. t = Abs(BIAS) / (SEP / Sqrt(n))

135									
136	Validation for	C-Set Spectra							
137	Property	ethanol							
138									
139	Spectrum Name	No.	Orig	Pred	Orig - Pred	Extrapolation	Residual	Residual too big	
140	EtOH 96	1	96	95.8965	0.103519		6.13798e-00	5	
141	EtOH 64	2	64	64.1316	-0.131623	1	9.16348e-00	5	
142	EtOH 67	4	67	66,7091	0.290922		0.000167636		
143	EtOH 69	5	69	69.152	-0.151998		7.68871e-00	5	
144	EtOH 75	7	75	75.4646	-0.464557		8.5873e-005		
145	EtOH 76	8	76	75.3891	0.610904		0.00028157		
146	EtOH 78	10	78	78.4499	-0.449885		0.000225863	j	
147	EtOH 79	11	79	79.1449	-0.144927		0.000197002		
148	EtOH 83	13	83	82.3745	0.625482		9.48781e-00	5	
149	EtOH 86	14	86	86.2338	-0.233807		0.000112266		
150	EtOH 90	16	90	89.6391	0.360851		0.000163933		
151	EtOH 92	17	92	92.4149	-0.414881		0.000243941		
152	Spectrum Name	No.	Orig	Pred	Orig - Pred	Extrapolation	Residual	Residual too big	
153	, Mar					10 58		1000	
154	Validation for	V-Set Spectra							
155	Property	ethanol							
156					III.				
157	Spectrum Name	No.	Orig	Pred	Orig - Pred	Extrapolation	Residual	Residual too big	
158	EtOH 65	3	65	65.2528	-0.25276		0.000114213		
159	EtOH 70	6	70	70.0285	-0.0284836		0.000205749	j	
160	EtOH 77	9	77	77.3283	-0.328338		0.000234052		
161	EtOH 81	12	81	80.4003	0.59974		0.000144012		
162	EtOH 89	15	89	89.1204	-0.120379		0.000193084		
163	EtOH 94	18	94	94.2257	-0.225743		0.000142493		
164	Spectrum Name	No.	Orig	Pred	Orig - Pred	Extrapolation	Residual	Residual too big	
165			25			10 198		1873	
166									

Statistics of the C-Set and V-Set:

Row	Name	Description
136- 151	Validation for C-Set Spectra	Name, number of spectrum, original, predicted property and the difference (original minus predicted); an X for "extrapolation", in
154- 163	Validation for V-Set Spectra	case the value is outside the calibration range; residual value and an X for "residual too big", in case the value is outside the allowed range, spectra GUIDs

3.17.3 Calibration Protocol Quantitative CV

Menu: Calibration / Calibration Protocol Calculate or Show

Icon:

Short Key: F8

The calibration protocol is an important validation report giving all information about the data selection and result of the chemometrics calculation. The calibration protocols are stored in the DB (or .nir project file).

Explanation of the content of the calibration protocols.

Quantitative Calibration: Cross Validation

The first section has the information about the user specific data selection (row 1-58).

Customer System Maintenance
11.01.2006 13:42:42
NIRCal V5.1 (Build 400)
C:\NIRCal-Data\NIRCAL-5 Projekte\FromDB_Lactose quantitation.ni
{98C449B2-729B-4385-8920-12874F9DB400}
Sugar-Quant.
{4923922A-2D1F-43EC-8BCB-F40E5B6AFC7C}
2
created editing
Lactoca Fina Sucrosa (tatal 22)
Lactose, (total 1/2)
69
66
1-55, 57-61, 63-67, 69. (total 66/69)
56, 62, 68. (total 3/69)
Cross Validation
1-42, 52-55, 57-61, 63-67, 69. (total 57/69)
43-51. (total 9/69)
56, 62, 68. (total 3/69)
(CV-mutable V-Set)
1, 7, 13, 19, 25, 31, 37, 52, 58, 64. (total 10/69)
2, 8, 14, 20, 26, 32, 38, 53, 59, 65. (total 10/69)
3, 9, 15, 21, 27, 33, 39, 54, 60, 66. (total 10/69)
4, 10, 16, 22, 28, 34, 40, 55, 61, 67. (total 10/69)
5, 11, 17, 23, 29, 35, 41. (total 7/69)
6, 12, 18, 24, 30, 36, 42, 57, 63, 69. (total 10/69)

Row	Name	Description
1	Calibration Protocol	Header
6	User	
7	Date/Time	Date and time of the calculation
8	Software	Current software version
9	Project File Name	Empty for DB, name of the project for file
10	Project Comment	Normally empty. The comment section of the project.
11	Project GUID	Global Unique IDentity of the project
12	Calibration Name	Name of the calibration
13	Calibration Comment	Normally empty

Row	Name	Description
14	Calibration GUID	Global Unique IDentity of the calibration
15	Calibration Version	Indicates the modification of the calibration. The Calibration Lifecycle Version is incremented by LifeCycle copy (or by XML import to avoid duplicates).
16	Calibration Lifecycle State	not available anymore
19	Properties in Project	Name and number of all properties in the project
20	Properties in Calibration Set	Name and number of calibrated properties
23	Spectra in Project	Total number of spectra in the project
24	Spectra in Calibration Set	Total number of spectra selected in the C-Set
26	Spectra in Calibration Set	Spectra selected in the C-Set
28	Spectra unused (U- Set)	Spectra not used for calibration (not in the C-Set)
30	Validation Method	Selected Validation method: Validation Set or Cross Validation (quantitative)
31	CV-mutable V-Set	Spectra used as V-Set (C-Set minus CV-permanent C-Set)
32	CV-permanent C-Set	Spectra used always in C-Set
33	CV-unused Group	Spectra belonging to a group, but not used for the CV
34- 40	CV-Group #: Group Index	List of the CV-mutable V-Set spectra, belonging to different groups

42	8
43	ŝ
44	8
45	8
40	8
46	9
4/	ŝ.
48	ŝ
49	
50	8 8
51	6 0
52	5 6
53	2
54	
55	3
56	× c
57	Ĭ.
58	8
59	ŝ
60	8
61	18
62	8
63	3
64	\$
65	
66	8
67	ŝ
07	3
00	8
69	8
70	2
/1	ŝ
72	9

C-Set Spectra	
Instrument type / serial	NIRFlex N500 / 400000011
y-Unit / Measurements / Scans	Reflectance / 1 / 16
Spectra Resolution	4 1/cm
Spectra y-Unit	Reflectance
Wavelengths Project Set	4000-10000 (total 1501/1501)
Wavelengths Calibration Set	4200-9700
navelenguis cansiadon sec	(Wavelengt
	hs] (total 1376/1501)
Number of Data Pretreatments	2
Data Pretreatment Sequence (short form)	ma,dg1
Data Pretreatment Sequence (detailed)	 MSC Amplification*, 4200-9700. (total 1376/1501), Mean Vector(1501) First Derivative Savitzky-Golay 9 Points
Method	PLS
Max Iterations	3000
Mean Centering	yes
Number of Primary PCs	15
Secondary/Calibration PCs	1-2. (total 2/15)
Blow Up Parameter	
Residual Blow Up	2
Score Blow Up	1.05
Max C-Set Spectra Residual	8.72336e-005
Max Allowed Residual for Calibration	0.000174467

42	C-Set Spectra	Instrument statistic
43	Instrument type / serial	Used instrument type and it's serial number
44	y-Unit / Measurements / Scans	Measuring principle / Number of repeated measurements and scans of a spectrum

Row	Name	Description
47	Spectra y-Unit	Measuring principle
50	Wavelengths Project Set	Measured wavelength range
51	Wavelengths Calibration Set	Selected wavelength range (selected datapoints / all data points)
55	Number of Data Pretreatments	Number of applied data pretreatment
56	Data Pretreatment Sequence (short)	Short name of the applied data pretreatment
57 Seque	Data Pretreatment ence (detailed)	Full name of the applied data pretreatment
60	Method	Selected calculation method / algorithm
61	Max Iterations	Calculation steps before default stop (max. 3000) Mean
62	Mean Centering	centering after pretreatment is activated: yes / no Number
63	Number of Primary PCs	of selected primary principal components
64	Secondary/Calibration PCs	Numbers of selected secondary principal components
66	Blow Up Parameter	Title
67	Residual Blow Up	Factor for residual limit calculation (default: 2)
68	Score Blow Up	Factor for score limit calculation (default: 1.05)
70	Max C-Set Spectra Residual	Highest value of the C-Set residuals
71	Max Allowed Residual for Calibration	Residual limit of the calibration for the application (max.* 2)

	27	
73	Q-Value V5	0.555521
75	Validation Method	Cross Validation
76		portante destructions
77	C-Set Residual too big	0
78	Num Properties	1
80	Rel. Consistency	0.381513
81	Weighted BIAS	0.000974035
82	Validity	0.00334391
83	Comparability	0.00200931
84	Precision	0.0297861
85	Weighted Accuracy	0
86		

Result of the calculation

Row	Name	Description
		Q-Value protocol
74	Q-Value V5	Q-Value of the calibration according version 5. The higher the Q-Value the best the calibration.
75	Validation Method	Selected Validation method: Validation Set or Cross Validation
77	C-Set Residual too big*	Number of C-Set spectra with too high residual = rejection of known (theoretical: 0)
79	Num Properties	Number of properties in the calibration (should be always 1 for the application)
80	Rel. Consistency*	The C- and V-Set should have similar low standard error of prediction (BIAS corrected): Abs(SEC-SEP)/(Abs(SEP)+1). Should be close to 0
81	Weighted BIAS*	The absolute V-Set BIAS should be as close to zero as possible: Abs(Vset-BIAS)/Abs(Range)

Row	Name	Description
82	Validity*	The V-Set regression coefficient should be near to 1:
		1-VsetRegr. Validity should be close to 0
83	Comparability*	C- and V-Set should have similar high regression coefficient of
		prediction:
		Abs(CsetRegr-VsetRegr). Comparability should be close to 0
84	Precision*	V-Set standard error of prediction (BIAS corrected) should be
		low:
		SEP/Abs (Range)
85	Weighted Accuracy*	V-Set residual sum of squares=RSS should be low (not BIAS
		corrected):
		Abs(Sum((Orig-Predicted)^2)/Abs (Range)

* used with different weighting values.

87		
88	Property Statistics	Lactose [%]
89		0.1
90	C-Set BIAS	0
91	C-Set SEE (SEC)	1.87989
92	CV SECV	3.00342
93		
94	C-Set Regression Coefficient	0.998665
95	C-Set Regression Intercept	0.137817
96	C-Set Regression Slope	0.997333
97		
98	C-Set Orig. min	0
99	C-Set Orig. max	100
100	C-Set Orig. mean	51.6667
101	C-Set Orig. sdev	36.3988
102		
103	C-Set Pred. min	-0.415629
104	C-Set Pred. max	99.8771
105	C-Set Pred. mean	51.6667
106	C-Set Pred. sdev	36.3502
107		
108	C-Set RSS	229.71
109		
110	C-Set Durbin-Watson	1.43165
111	C-Set Durbin-Watson in range 1.5 to 2.5	No
112	C.C. I.P. II.	2 07004
113	C-Set Resid. min	-3.87881
114	C-Set Resid. max	3.15957
115		
110	C Set a	ee
117	C-SELN	00
110		2

Statistics of the C-Set

88	Property statistics	Selected property
90	C-Set BIAS	Always zero by definition.
91	C-Set SEE (SEC)	Standard error of estimation of the C-Set. Should be as small as possible, but comparable to the standard deviation of the laboratory method.
92	CV SECV	Standard error of estimation of the C-Set. Should be as small as possible, but comparable to the standard deviation of the labor method.
94	C-Set Regression Coefficient	"r" shows, how well the predicted values of C-Set match the original values on average. Should be as close to 1 as possible (r > 0.9)
95 Interco	C-Set Regression pt	r= a + bx, where "a"= intercept of the C-Set. Should be as close to 0 as possible
96	C-Set Regression Slope	r= a + bx, where "b"= slope of the C-Set. Should be as close to 1 as possible

Row	Name	Description
		Statistics of the original property values (labor method, X-axis)
98	C-Set Orig. min.	The smallest property value in the C-Set
99	C-Set Orig. max.	The highest property value in the C-Set
100	C-Set Orig. mean.	The mean property value of the C-Set
101	C-Set Orig. sdev	The standard deviation of the property values in the C-Set
103- 106	C-Set Pred.	Statistics of the predicted property values (NIR, Y-axis). These values should be comparable to the similar values of the original property values.
108	C-Set RSS	C-Set residual sum of squares = RSS should be low: Sum((Orig-Predicted property)^2) = Sum (e^2)
110	C-Set Durbin-Watson	dw=Durbin-Watson = Sum of consecutive/succesive Residual Difference Square / Sum of Residual Square LINK: <u>Durbin-</u> <u>Watson Factor Statistics</u>
111	C-Set Durbin-Watson in range 1.5 to 2.5	Is the dw value between 1.5 and 2.5? Answer: Yes or No
113	C-Set Resid. min	Biggest negative deviation in the C-Set property values
114	C-Set Resid. max	Biggest positive deviation in the C-Set property values
117	C-Set n	Number of C-Set spectra

	A C	D	E	F	G	н	1	1	ĸ	L	M	N	0 -
120	C. Germanetter												100
121	Validation for	C-Set Spec	tra										
122	Property	Lactose [%											
123													
124	Spectrum Name	No.	Orig	Pred	Orig - Pred	Extrapolation	Residual	Residual too big		Spectrum GU	ID		
125	Lac 100 FSuc 0	1	100	99.2166	0.783411		6.26307e-005			(A959F52C-3D	025-4E2A-BCFE	5-372B07B1F5A4)	
125	Lac 90 FSuc 10	2	90	88.4103	1.58969		6.26803e-005			(5C22864A-88	7A-4F15-9C16	-1772F1065820}	
127	Lac 70 FSuc 30	Э	70	73.8788	-3.87881		6.25411e-005			(E1BA12EE-9	1E6-4263-9FE8	B-BOD58EAE0DAD}	
128	Lac 50 FSuc 50	4	-50	48.5142	1.4858		6.29638e-005			(E48FF9FD-9	521-43A5-AFC4	4-SEAABBA441BA	
129	Lac 30 FSuc 70	5	30	28.6081	1.39194		6.18719e-005			(6D139B35-B4	43E-4116-A8E2	2130178305EF)	
130	Lac 10 FSuc 10	6	10	10.853	-0.852997		6.48562e-005			(9BA83882-D4	19D-405B-B87C	-85658004A6E1)	
131	Lac 100 FSuc 0 2	7	100	99.4705	0.529539		6 70366e-005			(385F85E7-DF	23-413C-B602-	0686F1E790021	
132	Lac 90 FSuc 10 2	8	90	87.8748	2 12623		6 25893e-005			IDE6AC740-6	07F-4AEB-8900	3-82FDCDF31411)	
133	Lac 70 ESuc 30 2	9	70	73 4141	-3.41411		6 92447 e-005			(D26501A0-5)	FF2-45D0-9C10	0.0EE688EE9C20B)	
134	Lac 50 ESuc 50 Z	10	50	47 4897	2 51033		6 ft2992e-005			(EAS3RARD-A	4A2-4D11-9CC	D-75E7919DB8821	
135	Lac 30 FSuc 70 2	11	30	28 4373	1 56267		7 24564e.005			JEDERDERE, FC	50.4902.8739.	ReneEsconsol	
136	Lac 10 ESuc 90 2	12	10	10 9563	.0.956279		6 15396-005			170956950.92	E5.4444.40CB	A217EEA74E521	
137	Lac 100 ESuc 0 2	13	100	99 1836	0.816437		6 38578=005			MCBCOSEE.8	DA1 JEDO AFA	E-A47A39A654D0)	
138	Lac 90 ESuc 10 2	14	90	97 6533	2 34573		7.06272+.005			179DEMER.D	CRE.4221.9034	J7F6787066781	
130	Lac 70 ESuc 20 2	15	70	73 2224	2 20244		E E9394a.005			10000441 0-04	CT. 4722 POAD."	2607 ADDE0(061)	
1.40	Lac 50 CSuc 50 2	16	60	47.4106	0.68049		7 14345-005			MRACEERC A	C22 4001 AB20	E01600162064)	1000
1.41	Lac 30 FSuc 30 _2	17	30	39 6937	1 21600		6 6761E+ 005			107694575.55	0.02-4901-94030	30100176ED691	
141		17	30	20.003/	1.31029		0.075150-005			[92004F20-00	AD-400A/944F	091001767000	
142	Lac 10 F Suc 90 _2	10	10	11.4040	-1.40401		6.05956e-005			130007041-074	00-4205-8283-	010/49400DF74)	
143	Lac 100 FSuc 0_2	19	100	39.516	0.66399		4.925/28-005			10/989469-00	F4-905E-A542-	50332AA2E6F4]	
144	Lac 90 FSuc 10_2	20	90	87.5974	2.40262		5.7443/6-005			[1/B/AIFC-FI	CD4-4020-85F	1-23CD116619E7 }	
145	Lac /U FSuc 30_2	21	70	72.8195	-2.81953		5.823/7e-005			AAB4B9EA/	1/6-4634-66FL	J-D6E/88/844/3)	
146	Lac 50 FSuc 50 _Z	22	50	47.3/43	2.625/1		6.15829e-005			(652/UEBA-29	08-406D-A0D4-	-6/BA2C25347U)	
14/	Lac 30 FSuc 70 _2	23	-30	28.6402	1.35976		5.44901e-005			(CB368C86-6/	98-40E3-8351-	0173230/A873}	
148	Lac 10 FSuc 90 _2	24	10	11./184	-1.71842		6.9093/e-005			(DBCB4D56-3	223-4334-BECH	-E24001222612}	
149	Lac 100 FSuc 0 _3	25	100	99.5731	0.426871		5.73134e-005			(9E038304-1A	F6-4882-A71E	(IA0D4134272C)	
150	Lac 90 FSuc 10 _3	26	90	90.7578	-0.757836		7.28942e-005			(476A6EEC-00	268-4275-A397-	42914EB5A6AB)	
151	Lac 70 FSuc 30 _3	27	70	72.7124	-2.71243		5.85262e-005			(7861CAB9-50	036-4507-83D6-	0F027E22BC6C}	
152	Lac 50 FSuc 50 _3	28	-50	46.8404	3.15967		7.03039e-005			{E4DC955C-3	SAC-4B27-AFC	A-78CD40304B33)	
153	Lac 30 FSuc 70 _3	29	30	28.9186	1.06139		6.82207e-005			{4B1204D5-4/	VGA-41AD-BABB	3-58D36007EB03}	
154	Lac 10 FSuc 90 _3	30	10	11.8776	-1.87757		7.33886e-005			(4EB85E6F-78	33F-40FA-9AA3	3-43016636614F)	
155	Lac 100 FSuc 0 _3	31	100	99.6039	0.396105		5.40051e-005			{234190DE-E0	C31-458C-B360	-3AD12CFAD117)	
156	Lac 90 FSuc 10 _3	32	90	90.8938	-0.893754		5.87755e-005			(64C593D4-09	D7-4E18-BC05	-64C84D9499BE)	
157	Lac 70 FSuc 30 _3	33	70	72.701	-2.70097		6.19551e-005			(DFA5156A-8F	AE-4EB1-BBB	0-2F8309A64761)	
158	Lac 50 FSuc 50 _3	34	50	46.8443	3.15573		5.72467e-005			(F868B7DB-83	3EA-45C9-AC11	E-C2F59B66D4CC}	
159	Lac 30 FSuc 70 _3	35	30	28,9198	1.08022		6.03003e-005			(FAB59F20-65	3A7-4CFC-A950)-602E7284A7A9}	
160	Lac 10 FSuc 90 _3	36	10	11.798	-1.79796		5.01087e-005			(FFE77FDC-7	54C-44A5-9F00	>6F860750AC9F)	
161	Lac 100 FSuc 0_3	37	100	99.8771	0.122935		6.55374e-005			(CF11CC53-A	F6C-4570-97E3	56E7B8375BEF)	
162	Lac 90 FSuc 10 _3	38	90	90.8621	-D.862138		6.47017e-005			(9336AB4D-1A	AC2-4578-9260-	60BA683EDD0F}	
163	Lac 70 FSuc 30 _3	39	70	73.1228	-3.12276		5.71066e-005			(BAA5B1F3-8	3DB-4F5F-ASE	9-5BC4F61D63CF)	
164	Lac 50 FSuc 50 3	40	-50	47.111	2.889		6.19926e-005			(39C0D77B-75	BE-49E0 AFA	A-56C1CE278813]	
165	Lac 30 FSuc 70 3	41	30	28.8653	1.1447		5.56337e-005			(5AE675E7-B)	388-48D2-9E98	E-0F3156A926AA)	
165	Lac 10 FSuc 90 3	42	10	11.8372	-1.83718		6.60765e-005			(FD08B06D-23	3BC-4F9B-82D8	F-74BACAA86910)	
167	L 0 FSuc 100	43	0	-0.155291	0.155291	X	8.58358e-005			(E676AF71-C3	3D5-4F4A-AD60	D-80FF782D306B)	
•													
-													-

Result of the final calibration

121- Validation for C-Set 190 Spectra	Name, number of spectrum, original, predicted property and the difference (Orig-Pred); an X for "extrapolation", in case the value is
	outside the calibration range; residual value and an X for "redidual too big", in case the value is outside the allowed range; spectrum GUID

	A	C	D	E	F	G	н	1	1	K	L	M	N	0 .
193		Validation for	CV-Group	Spectra		125		50	S				- 194 - 195	and the second
194	1	Property	Lactose [9	6]										
195	L			200										
196		Spectrum Name	No	Orig	Pred	Ong - Pred	Extrapolation	Residual	Residual too big		Spectrum GU	ID .		
197		Lac 100 FSuc 0	1	100	98.2719	1,72812		0.000147428			(A959F52C-30	025-4E2A-BCF	6-37280781F5A4)	
198	1	Lac 90 FSuc 10	2	90	88,103	1.89698		0.000108548			(5C22864A-88	87A-4F15-9C16	-1772F10658201	
199	1	Lac 70 FSuc 30	3	70	75 6891	-5.68907		8 11029e-005			(E1BA12EE-9	1E6-4263-9EE	8-BDD58EAEDDADS	
200		Lac 50 ESuc 50	4	- 40	46 2745	3 73663		8 19771-005			JE48EE9ED.9	521.4345-AFC	4.5EAABRA441BAL	
281		Lac 30 FSuc 70	-	30	28 2204	1 7796		9.14958-005			160139835.B	13E 4116 ARE	2.2130178305EEL	
282		Lac 10 ESuc 10	6	10	11 8162	1 81616		0.000102906			(0BA83992.D/	100_105B.887(-B565B00466E11	
202		Lac 100 ESuc 0 2	7	100	99,5721	1.47688		0.000141632			139559557.00	523.4130.BB07	D000000440011	
203		Lac 00 ESuc 10 2	á	90	07 6672	7.44000		0.000141002			IDEEA 0740 E	17E ANED 991	D E2EDCDE214111	
205		Lac 70 ESuc 20 2	9	70	75 1666	E 10040		8 11738-005			(D2090140.B	EED AEDO OCT	D. DEEEBBEEDC70BI	
203	ŧ.,	Lac 10 FSuc 30 _2	10	50	AE 2720	4 6244		6.75534=005			1020001A0-0	UAD 4000-901	0-0EF666EE90108	
200		Lac 30 FSuc 30 2	10	30	40.3708	4.0211		9.98373+005			IEDEDREDE EC	CC 4001 P300	DODGEOSTOCOCI	
207		Lac 30 F Suc 70 _2	12	30	20.00/2	1.04277		0.002/2000			10000000C+FC	-5U-4002-07 38	-D9D9FOF3DUSD}	
200		Lac 10 F Suc 90 _2	14	100	00.0414	+ 20007		9.30126-005			1/0000000000	COMMINICAL CONTRACTOR	>A21/EFA/4002]	
209		Lac 100 FSuc 0 _2	13	100	98.2414	1,75057		0.000149341			(4CBCCBFE-C	12A1-48U9-AE/	46-A47A33A054UU	
210		Lac 90 FSuc 10 2	14	30	07.3304	2.00903		0.000119242			(79UE44F9-D	CBE-4221-9034	e-u/r6/b/ub6/b)	
211		Lac /0 FSuc 30 _2	15	/0	74.9199	-4.91966		7.41689e-005			19258/8/3-23	67-4733-BU4D	260/ADBFUC61)	
212		Lac bu FSuc bu _2	16	50	45.3772	4.62281		8.559529-005			46A6F6BC-A	C32-4901-AB3	8-E915891F2D54}	
213		Lac 30 FSuc 70_2	17	30	28.3099	1.69006		9.14/29e-005			{92884F26-55	AD-450A-944P	-391CC1/6FD68}	
214		Lac 10 FSuc 90_2	18	10	12.4564	-2.40641		9.02858e-005			(3085/541-0/	UD-4205-8283	-01DA94068F74)	
215		Lac 100 FSuc 0 _2	19	100	98.3733	1.62666		0.000137835			(07969469-CC	F4-466E-A642	-50932AA2E8F4)	
216		Lac 90 FSuc 10 _2	20	90	87.277	2.72299		9.88646e-005			{1787A1FC-F	CD4-4C2C-85F	1-23CD116619E7}	
217		Lac 70 FSuc 30 _2	21	70	74.5206	-4.52057		7.47198e-005			(AAB4B9EA-7	17E-4634-88F	D-DBE788784473]	
218		Lac 50 FSuc 50 _2	22	50	45.3241	4.67591		7.15264e-005			(65270EBA-29	08-406D-A0D4	67BA2C25347D)	
219	4	Lac 30 FSuc 70 _2	23	30	28.271	1.72898		8.69493e-005			{CB368C86-67	798-40E3-8351	-D1732307A873}	
220		Lac 10 FSuc 90 _2	24	10	12.6996	-2.69966		9.5087e-005			(DBCB4D56-3	223-4334-B6C	F-E24D01222612}	
221		Lac 100 FSuc 0 _3	25	100	98.574	1.42598		0.000121072			(9E038304-1A	F6-4882-A718	-0A0D4134272C}	
222		Lac 90 FSuc 10 _3	26	90	90.5145	-0.514531		9.61617e-005			(476A6EEC-D	268-4275-A397	-42914EB5A5AB)	
223		Lac 70 FSuc 30 _3	27	70	74.3581	-4.35812		7.44567e-005			(7861CAB9-50	036-4507-83D6	-OF027E22BC6C}	
224		Lac 50 FSuc 50 _3	28	50	44.8345	5.1654B		7.92303e-005			{E4DC955C-3	5AC-4B27-AF(A-78CD40304B33)	
225		Lac 30 FSuc 70 _3	29	30	28.5628	1.4372		8.35354e-005			(4B1204D5-4/	46A-41AD-8AB	6-59D36007EB03)	
226		Lac 10 FSuc 90 _3	30	10	12.8243	-2.8243		8.99544e-005			(4EB05E6F-7)	83F-40FA-9AA	3-43016635614F)	1.00
227		Lac 100 FSuc 0 _3	31	100	98.6134	1.38659		0.000126034			{234190DE-E	C31-458C-B360	3AD12CFAD117)	
228		Lac 90 FSuc 10 3	32	90	90.6445	-0.644491		8.42124e-005			(64C593D4-09	D7-4E18-BC08	5-64C84D9499BE)	
229		Lac 70 FSuc 30 3	33	70	74.3617	-4.36166		9.6785e-005			(0FA5156A-86	FAE-4EB1-BBB	30-2F8309A64761)	
230		Lac 50 FSuc 50 3	34	50	44.B165	5.18345		7.76851e-005			(F86887DB-8)	3EA-45C9-AC1	E-C2F59B65D4CC}	
231	1	Lac 30 FSuc 70 3	35	30	28.5533	1.44665		9.79477e-005			(FAB59F20-69	9A7-4CFC-A95	0-602B72B4A7A9}	
232		Lac 10 FSuc 90 3	36	10	12 7606	-2.76061		8.4351e-005			(FFE77FDC-7	54C-44A5-9FD	D-6F860750AC9F1	
233	1	Lac 100 FSuc 0 3	37	100	98.9128	1.08719		0.000129966			ICF11CC53-A	F6C-4570-97E	3-56E7B8375BEF)	
234	1	Lac 90 FSuc 10 3	38	90	90.6133	-0.613344		9.50436e-005			(9336AB4D-1/	AC2-4578-9260	606A683EDD0F1	
235	1	Lac 70 FSuc 30 3	39	70	74,7654	-4.76536		6.95007e-005			(BAA6B1F3-8	3DB-4F5F-A5F	9-6BC4F61D53CF1	
236	1	Lac 50 FSuc 50 3	40	-50	45 144	4 86599		8 09549e-005			(39C0D77B-74	SBE-49E0-AFA	A-56C1CE278813)	
237	1	Lac 30 ESuc 70 3	41	30	28,5048	1 49519		8.42923e-005			ISAE675E7.B	368-4802.969	E-0F3156A926AA1	
238		Lac 10 ESuc 90 3	47	10	12 8135	-2 81351		8 99097#-005			(ED08806D-2	3BC-4E9B-82D	E-74BACA496910)	
239	1	Lac 100 ESuc 0 4	52	100	98 2811	1 71892		0.000130972			(22EEC5E2-4)	A3C-4RC8-REC	C-97EE5103A20B1	
240		Lac 90 FSuc 10 4	53	90	90.2686	-0.268635		9.70288e-005			ISBEAR COLD	34C-4CDE-829	8-D6AE2E6D779E1	
	č	Contraction of the second second second		100							1000000000		o so ser obriget	

Result of the CV-steps

Row	Name	Description
194-	Validation for CV-Group	Name, number of spectrum, original, predicted property and the
253	Spectra	difference (Orig-Pred); an X for "extrapolation", in case the value is outside the calibration range; residual value and an X for "redidual too big",in case the value is outside the allowed range; spectrum GUID

3.17.4 Prediction Protocol

Menu: Calibration / Prediction Protocol / Predict Project

Prediction Protocol of quantitative Calibration

The quantitative calibration will give the list of selected spectra with their name, the spectra number, the residual value. The outlier according residual means, the matrix is different, in this case the predicted property value should be in question. The scores outliers are less important: scores are intermediate results. The spectra with property outliers have extrapolated values: they are outside the calibrated range. The predicted and original property values give the information about the calibration quality.

Introduction

In NIRCal new statistical measures are included in the prediction protocol. The statistics are calculated in compliance with the ISO 12099 standard: Animal feeding stuff, cereals and milled cereal products Guidelines for the application of near infrared spectrometry.

The statistics are included for each property in the prediction protocol. The statistics are calculated using the spectra which are not flagged as outliers. If there are too many outliers, the limits for the calibration should be adjusted in the Calibration -> Outlier Detection -> Advanced menu.

Calibration Properties	Min	Max	Offset	Slope	RMSEP	SEP	RSD	Bias
Moisture [%]	33.95	43.85	-0.1136001	1.0029908	0.2391134	0.2390958	0.2394709	-0.0029012
Fat [%]	29.4	36.2	0.0568048	0.9985213	0.4415973	0.4415367	0.4423662	0.0073186

Important:

The statistics only gives relevant estimates of calibration performance if the prediction protocol is made using **an independent test set**.

The statistics reported here can deviate from what is reported in the Original vs Predicted Property plots of two reasons: 1) outliers are not included, and 2) the linear regression to find slope and offset is made using the predicted values as the independent variable.

Definitions

The prediction protocol includes the following statistics:

- Offset
- Slope
- RMSEP
- SEP
- RSD
- Bias
- Dias

The following figure explains some of the statistics.

The vector of difference between the predicted and the reference values for sample *i* is defined as:

$$e_i = y_i - \hat{y}_i$$

Where y_i is the reference value for sample *i*, \hat{y}_i is the predicted value for sample *i* and e_i is the residual for sample *i*.

Bias: The bias is calculated as the mean of the differences.

$$\bar{e} = \frac{1}{n} \sum_{i=1}^{n} e_i$$

RMSEP (Root Mean Square Error of Prediction): The RMSEP is an estimate of the random and systematic errors in the predictions.

$$RMSEP = \sqrt{\frac{1}{n}\sum_{i=1}^{n}e_{i}^{2}}$$

SEP (Standard Error of Prediction): The SEP is an estimate of the random error.

$$SEP = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (e_i - \bar{e})^2}$$

Slope and offset: The slope and offset of the regression line are both indicated in the figure above. They are found as a linear model of the form y = ax+b, where y is the reference value, *a* is the slope, *x* is the predicted value and *b* is the offset:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$b = \text{offset} = \hat{\boldsymbol{\beta}}(1)$$
$$a = \text{slope} = \hat{\boldsymbol{\beta}}(2)$$

where X is the a *n* x 2 matrix with 1 in the first column and \hat{y} in the second column; y is a column vector of reference values and \hat{y} is a two element column vector with the offset and slope.

RSD (Residual Standard Deviation): This estimates the random error corrected with the slope.

$$RSD = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - a + b\hat{y}_i)^2}$$

RMSEP vs SEP vs RSD: The three estimates of random errors each include

- □ **RMSEP**: Random error + systematic slope + bias
- **SEP**: Random error + systematic slope **RSD**: Random error

Slope and bias correction

If the prediction protocol is based on an **independent test set**, then the slope and offset calculated in the prediction protocol can be used directly in the management console to make slope and bias correction. **Notice that the offset value from the prediction protocol must be entred in the bias field.**

	8		8		8		3		8		•			
Prediction Protocol								-						
Protocol Type	Predict Project										· · · · · · · · · · · · · · · · · · ·			
Creation User	Administrator	Administrator												
Creation Date/Time	2/11/2013 2:53:17	PM				1								
Creation Software	NIRCal V5.5 (Bull	d 1000)												
Project Name	C:(Program Files)	Buch/NIRSolutions	Qulokguide\Data\Qu	antitative.nlr										
Project Comment														
Project GUID	{F8DC14FE-E183	-40EA-8681-099DB	2A425EC}											
Calibration Name	unnamed													
Calibration Comment														
Calibration GUID	{C77DC085-C224	-4860-82E0-7AC94	2AB418B}											
Calibration Version	not calculated und	er LifeCycle												
Calibration Lifecycle Sate	not created													
Calibration Method	quantitative													
Calibration max allowed Residual	0.0003897													
Calibration Properties	Min	Max	Offset	Slope	RMSEP	SEP	RSD	Blas						
Moisture [%]	33.95	43.85	-0.0542893	1.0014750	0.2323905	0.2323904	0.2328167	0.0002549						
Fat [%]	29.4	36.2	0.1520732	0.9958605	0.4457977	0.4455929	0.4464122	0.0135093						
			Outlier	Outlier	Outlier	Predicted			Original					
Spectra Name	No	Residual	Residual	Score	Property	Moleture [%]	Fat [%]		Molature [%]	Fat [%]	Spectra Gi			
Sample 1 / 1	1	0.0000811				34.8042	34.2541		34.7500	34.8000	{684C43E			
Sample 1 / 2	2	0.0000854				34.7430	34.3860		34.7500	34.8000	{8900BD5!			
Sample 1 / 3	3	0.0000867				34.7810	34.3445		34.7500	34.8000	{024A2A58			
Sample 2 / 1	4	0.0000579				35.6230	33.5843		35.4000	33.6000	{447BD81:			
Sample 2 / 2	5	0.0000562				35.4498	33.5955		35.4000	33.6000	{676F1291			
Sample 2 / 3	6	0.0000642				35.4178	33.5066		35.4000	33.6000	{798D8C6			
Sample 3 / 1	7	0.0000845				35.8746	33.3787		35.8000	33.5000	{523BFAC			
Sample 3 / 2	8	0.0000725				35.7697	33.3615		35.8000	33.5000	(9DB788B)			
Sample 3 / 3	9	0.0000712				35.7452	33.2786		35.8000	33.5000	{0E3C9D8			
Sample 4 / 1	10	0.0000805				35.7214	33.5701		35.6500	33.2000	{3E3779EC			
Sample 4 / 2	11	0.0001007				35.7466	33.4184		35.6500	33.2000	{14F26DC			
Sample 4 / 3	12	0.0000975				35.8053	33.3236		35.6500	33.2000	{B3042386			
Sample 5 / 1	13	0.0000714				35.8756	33.5519		35.8300	33.0000	{5DA20F2			
Sample 5 / 2	14	0.0000704				35.8698	33.5640		35.8300	33.0000	{DC2D5F/			
4											•			

Prediction Protocol of qualitative Calibration

The prediction protocol (SIMCA and Cluster) can be configurated: LINK: <u>Cluster Prediction Protocol</u>.

The documented 7 cases are:

Case	Group	Symbol	Residual	Distance	Name/Property
1	not in a cluster		OK	not OK	not OK
2	false identified	?	OK	OK	not OK
3	identified	*	OK	OK	OK
4	not identified CLU OK	%	not OK	OK	OK
5	not identified CLU BAD	&	not OK	OK	not OK
6	not identified known	-	not OK	not OK	OK
7	not identified unknown	=	not OK	not OK	not OK

Example:

1	Prediction Protocol			
4				
5				
6	Protocol Type	Predict Proj	ect	
7	Creation User	Customer S	ystem Maintenance	
8	Creation Date/Time	4/29/20051	0:46:14 AM	
9	Creation Software	NIRCal V5 (B	Build 3000)	
10	Project Name	Fluka Ident		
11	Project Comment	10.000 000 000 000 000 000 000 000 000 0		
12	Project GUID	{BA28704E	-DC90-4B17-A5AS	-79C342DF42E2}
13	Calibration Name	SIMCA Oxal	ic acid	
14	Calibration Comment			
15	Calibration GUID	{F6B39CD1-	-90A5-4C6B-AEB2	2-4A5295E32695}
16	Calibration Version	0		
17	Calibration Lifecycle Sate	created editing		
18				
19	Calibration Method	qualitative		
20	Calibration max allowed Residual	C 40	0.0001972	
21				
22	Calibration Properties	Min	Max	
23	Oxalic acid	0	1	
24			10 A	
25	Protocol filter settings			
26	not in a cluster (!)	on		
27	false identified (?)	on		
28	identified (*)	on		
29	not identified known (-)	on		
30	not identified unknown (=)	on		
31	not identified Clu OK (%)	on		
32	not identified Clu BAD (&)	on		
33				

On the top of the protocol about some general information about the calibration, the calibrated properties are listed and the filter setting are visible. The **calibration max. allowed residual** is important to note.

33									
34				Outlier	Outlier	Outlier			
35	Spectra Name	No	Residual	Residual	Score	Property	Predicted	Original	
36	75702 Oxalsäure -007	1'	0.0000655	0.00000000	Contrass -	1.5-correct.com	Oxalic acid	Oxalic acid	
37	75702 Oxalsäure -007	2*	0.0000729				Oxalic acid	Oxalic acid	
38	75702 Oxalsäure -007	3*	0.0000677				Oxalic acid	Oxalic acid	
39	75702 Oxalsäure -011	4.	0.0000591				Oxalic acid	Oxalic acid	
40	75702 Oxalsäure -011	5*	0.0000550				Oxalio acid	Oxalio aoid	
41	75702 Oxalsäure -011	6*	0.0000516			-	Oxalic acid	Oxalic acid	
42	75702 Oxalsäure -011	7.	0.0000892				Oxalic acid	Oxalic acid	
43	75702 Oxalsäure -011	8*	0.0000652				Oxalic acid	Oxalic acid	
44	75702 Oxalsäure -011	9.	0.0000886				Oxalic acid	Oxalic acid	
45	75702 Oxalsäure -009	10.	0.0000629				Oxalio acid	Oxalio acid	
46	75702 Oxalsäure -009	11*	0.0000705				Oxalic acid	Oxalic acid	
47	75702 Oxalsäure -009	12*	0.0000734				Oxalic acid	Oxalic acid	
48	75702 Oxalsäure -010	13*	0.0000696				Oxalic acid	Oxalic acid	
49	75702 Oxalsäure -010	14 *	0.0000789				Oxalic acid	Oxalio acid	
50	75702 Oxalsäure -010	15'	0.0000691				Oxalic acid	Oxalio aoid	
51	0001_448972/1-01-005	16 =	0.0016402	×	×	×		K-PO4 dibasic	
52	0001_448972/1-01-005	17 =	0.0016495	×	×	×		K-PO4 dibasic	
53	0001_448972/1-01-005	18 =	0.0016432	×	×	×		K-PO4 dibasic	
54	0006_60355 K-PO4 dibas_449026/1-01-007	19 =	0.0016514	X	×	×		K-PO4 dibasio	
55	0006_60355 K-PO4 dibas_449026/1-01-007	20 =	0.0016510	×	×	×		K-PO4 dibasio	
56	0006_60355 K-PO4 dibas_449026/1-01-007	21=	0.0016465	×	×	×		K-PO4 dibasic	
57	0007_60355 K-PO4 dibas_449026/1-01-007	22 =	0.0016427	×	×	×		K-PO4 dibasic	
58	0007_60355 K-PO4 dibas_449026/1-01-007	23=	0.0016447	×	×	×		K-PO4 dibasic	
59	0007_60355 K-PO4 dibas_449026/1-01-007	24 =	0.0016479	×	×	×		K-PO4 dibasio	
60	0008_60355 K-PO4 dibas_449026/1-01-007	25 =	0.0016442	×	×	×		K-PO4 dibasio	
61	0008_60355 K-PO4 dibas_449026/1-01-007	26 =	0.0016471	×	×	×		K-PO4 dibasic	
62	0008_60355 K-PO4 dibas_449026/1-01-007	27=	0.0016416	×	×	×		K-PO4 dibasic	
63	0009_60355 K-PO4 dibas_449026/1-01-007	28 =	0.0016333	×	×	×		K-PO4 dibasic	
64	0009_60355 K-PO4 dibas_449026/1-01-007	29=	0.0016388	×	×	×		K-PO4 dibasio	
65	0009_60355 K-PO4 dibas_449026/1-01-007	30 =	0.0016358	×	×	×		K-PO4 dibasic	

Each spectra name is listed with the number. Behind the number there is the symbol, which identification case it is. The actual residual will be compared with the allowed max. residual and in case it is higher, the spectrum is a residual outlier and will be not identified: residual criteria is not fulfilled. The possible scores outliers are less important: LINK: <u>Cluster Cal.Protocol</u>. Under predicted property the filed is empty, if the spectrum is not a cluster. There is the name of the cluster, in case the spectrum is in a certain cluster.

In case the predicted and original property names are matching, it is correct prediction: spectra 1-15.

93	0001_09900 NH4-Oxalate Monohydr_449073/	58 =	0.0020416	×	×	×		NH4-Oxala	te monohudr	
94	0001 09900 NH4-Oxalate Monohydr 449073/	159=	0.0020215	X	×	×		NH4-Oxala	ate monohudr	
95	0001_09900 NH4-Oxalate Monohydr_449073/	160 =	0.0020328	×	×	×		NH4-Oxala	ate monohydr	
96	0002_09900 NH4-Osalate Monohydr_449073/	61=	0.0020259	×	×	×		NH4-Oxala	ate monohydr	
97	0002_09900 NH4-Osalate Monohydr_449073/	62 =	0.0020141	X	×	×		NH4-Oxala	ate monohydr	
98	0002 09900 NH4-Osalate Monohydr 449073/	63=	0.0020201	X	×	×		NH4-Oxala	ate monohydr	
99	0003_09900 NH4-Oxalate Monohydr_449073/	64 =	0.0020348	×	×	×		NH4-Oxala	ate monohydr	
100	0003_09900 NH4-Oxalate Monohydr_449073/	65=	0.0020326	×	×	×		NH4-Osala	te monohydr	
101	0003_09900 NH4-Oxalate Monohydr_449073/	66 =	0.0020199	×	×	×		NH4-Oxala	ste monohydr	
102	0004_09900 NH4-Osalate Monohydr_449073/	67=	0.0020272	×	×	×		NH4-Osala	ate monohydr	
103	0004_09900 NH4-Oxalate Monohydr_449073/	68 =	0.0020121	×	×	×		NH4-Osala	ate monohydr	
104	0004_09900 NH4-Oxalate Monohydr_449073/	69=	0.0020263	×	×	×		NH4-Osala	ate monohydr	
105	0005_09900 NH4-Oxalate Monohydr_449073/	70 =	0.0020022	×	×	×		NH4-Oxala	ate monohydr	
106	0005_09900 NH4-Oxalate Monohydr_449073/	71=	0.0020404	×	×	×		NH4-Oxala	ate monohydr	
107	0005_09900 NH4-Oxalate Monohydr_449073/	72 =	0.0020188	×	×	×		NH4-Oxala	ate monohydr	
108	0001_51456 Urea_449278/1-01-006-10	738	0.0042226	×	1 200	×	Oxalic acid	Urea	and sold outst at	
109	0001_51456 Urea_449278/1-01-006-10	74 &	0.0042696	×		×	Oxalic acid	Urea		
110	0001_51456 Urea_449278/1-01-006-10	75 &	0.0043015	×		×	Oxalic acid	Urea		
111	0002_51456 Urea_449278/1-01-006-10	76 &	0.0042500	×	×	×	Oxalic acid	Urea		
112	0002_51456 Urea_449278/1-01-006-10	77 &	0.0042337	×	×	×	Oxalic acid	Urea		
113	0002_51456 Urea_449278/1-01-006-10	78 =	0.0042785	×		×		Urea		
114	0003_51456 Urea_449278/1-01-006-10	79=	0.0042870	×		×		Urea		
115	0003_51456 Urea_449278/1-01-006-10	80 =	0.0042150	×		×		Urea		
116	0003_51456 Urea_449278/1-01-006-10	81=	0.0042590	X		×		Urea		
117	0004_51456 Urea_449278/1-01-006-10	82 =	0.0042155	×		×	10 million	Urea		
118	0004_51456 Urea_449278/1-01-006-10	83 &	0.0042671	X		×	Oxalic acid	Urea		
119	0004_51456 Urea_449278/1-01-006-10	84 =	0.0042658	X		×		Urea		
120	Total outliers		1.27.000.200.200.200.1	69	59	69		19421-52.4		
121	Contraction of the state of the									
122	Total not in a cluster (!)	0	Residual OK	, but not in	a cluster					
123	Total identified (*)	15	Residual OK	, cluster fo	und, predicted	is equal origina	d.,			
124	Total false identified (?)	0	Residual OK	, cluster fo	und, predicted	is NOT equal o	riginal			
125	Total not identified, Cluster OK (%)	0	Residual too	big, cluste	r found, predic	sted is equal orig	ginal			
126	Total not identified, Cluster BAD (&)	6	Residual too	big, cluste	r found, predic	sted is NOT equ	al original			
127	Total not identified known (-)	0	Residual too	big, no clu	ister found, orig	ginal property is	available			
128	Total not identified unknown (=)	63	Residual too	big, no clu	ister found, orig	ginal property is	not available			

In case the predicted and original properties are different, it is a wrong identification: spectra 73-77 and 83. These spectra are in a false cluster, but will not be identified, while the residuals are much higher (0.0042) as the allowed residual (0.0002).

Correct identifications -case 3- and not identified unknown -case 7- are **less important**, deactivating e.g case 3 and 7 will give a shorter protocol.

Especially cases **1** and **5** are critical. By case 5 the residual relationship (actual against allowed) should be controlled. Case 2 is inacceptable.

In summary all spectra should be listed under the number of "Total identified" or "Total not identified unknown", no spectra should be in the 5 other types. Printouts of the prediction protocols are part of the validation procedure.

When the result is unsatisfactory, the calibration adjustment should be changed. In case there is no any calibration, which problems without works, the possibilities of improvement are:

not in a Cluster (!)	Add these spectra to the project without allocating them to C- or V-Set. Calculate and observe if the spectra are lying far from the cluster. If not, the spectra must remain in the project (similar spectra)
false identified (?)	Add the spectrum that was identified as false to the project and enlarge the calculation (similar spectra)
identified (*)	The spectra are OK (known, identified)
not identified Clu OK (%)	These spectra are rare, because the known substance spectra are only to be found in one project, eventually add such spectra to the C-Set.
not identified Clu BAD (&)	Reducing the Radii Blow Up Factor may help. Otherwise compare max allowed residual with actual residual. When the actual one is 150% or more than the allowed, the calibration can be used. In case the actual residual is slightly higher than the allowed, the spectra should be calibrated in the same project.
not identified known (-)	These spectra are rare because the known substance spectra are only to be found in one project, eventually add these to the C-Set.
not identified unknown (=)	The spectra are OK (unknown, not identified).

Only calibrations without false identification can be used.

NOTE

The warning: incompatible spectra means, that the number of data point or the wavelength range of the calibration and predicted spectra are not matching because of different resolution or different instrument type.

3.18 Matrices

3.18.1 How to display matrices

Each matrix can be displayed in different plots. Available views are:

- 1D Scatter
- 2D Line
- 2D Scatter
- 2D Combined Scatter
- 3D Scatter
- □ 3D Surface

Export:

Export the matrix to a *.dat File. To export the table to excel display the matrix first as table and then export to *.xml (slow) or *.txt (fast) format.

Rename:

Matrices can be temporarily renamed.

Example : 2D Scatter plot

The Coomans plot is part of the SIMCA Overview plot. It is a 2D-Scatter plot of the 2 matrices

- Residual (matrix ID 95)
- Leverages (matrix ID 94)

E Calibrations	# 78	V-Set Spectra	Residuum Min	0	Wave
Master	# 80	Spectra		0	One S
Sugar_Cluster	# 81	Spectra		0	Spectr
H Sugar_Cluster	# 82	Wavenumber		0	One S
	# 83	Wavenumber		0	Wavel
SIMCA File Saccharose - not calculat	# 84	Property		0	One S
SIMCA Lactose - not calculate	# 85	Property		0	Proper
	# 86	Factor		0	One S
H- Matrices	# 87	Factor		0	PC Sel
	# 93	C-Set Spectral	Residuum MinMax	0	PC Sel
	# 94	Leverages	and the second se		
	# 95	Residuals	Explore		
	# 96	Correlation Sp	Dis 1D-Scatter		p
	# 97	Correlation Wa			el
	# 98	real time	ZD-Line		5
	井 99	real time	2D-Scatter		
	# 100	Time	2D-Combined	Scatter	5
	# 101	Time	头 3D-Scatter		p
	# 102	Property	2D_Surface		þ
	# 103	Property			p
	# 104	Instrument	Table Table		5
	# 105	Instrument	Export		ri T
	# 106	Creator	Exportin		5

- 1. Select **Matrices** in the NIR-Explorer tree
- 2. then select the two matrices in the NIR-Explorer
- 3. click the right mouse and then 2D-Scatter

NOTE

To save such a created plot a workspace can be saved and reused within other projects.

3.18.2 Calibration Residual Limits

Description	The min. and max. residual is depending on the number of primary PCs.
Use	The maximum allowed residual of the calibration is valid for the application.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	55
Tip	The highest residual of the C-Set is used for the residual limit calculation.
Details	The allowed residual = 2 * maximum C-Set residual. 2 is the default of
	residual blow up, can be edited by the user.
Related Topic	Residuals, Primary PCs

3.18.3 Calibration Residual Limits with Blow Up

Description	The min. and max. residual is depending on the number of primary PCs.
Use	The maximum allowed residual of the calibration is valid for the application.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	56
Тір	The highest residual of the C-Set is used for the residual limit calculation.
Details	The allowed residual = 2 * maximum C-Set residual. 2 is the default of residual blow up, can be edited by the user. Do not use residual blow up smaller as 1! The minimum residual = minimum C-Set residual /2. It is not used for the application.
Related Topic	Residuals, Primary PCs, Blow Up Limits

3.18.4 Calibration Score Limits

Description	Allowed minimum and maximum score values of the calibration.
Use	Score outlier detection in the validation set, especially in Cluster calibration.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	45
Tip	Only scores outliers according the secondary PCs are important.
Details	
Related Topic	Scores

The allowed score limits for the validation: **1.05 x min. and max. scores of the C-set spectra**. The default blow up limit of 1.05 can be edited by the user.

3.18.5 Cluster per Property

Description	Number of cluster -connected radii area- per property.
Use	Additional information for property separation.
Method	Cluster (CLU) / SIMCA
Matrices ID	52
Тір	The number of cluster per property is always 1 in a good calibration.
Details	Each spectra of the same property should be together and build one connected cluster.
Related Topic	Property Box Radii, Property Box Center

A good calibration has only one cluster for each property

3.18.6 Consistency

Description	Consistency describes the relation between the standard errors of the calibration and validation sets.
Use	Selecting the secondary PCs for a robust calibration.
Method	PCR / PLS (only with VS mode)
Matrices ID	33
Тір	SEP- and SEE-value should be small and similar for a stable calibration. With an optimal number of PCs the consistency shows values around 100 (80-110).
Details	Visible in the Overview, in the View: Secondary PCs Selection and under Graphics.
Formula	Consistency=100 × SEE / SEP
Related Topic	<u>C-Set SEE, V-Set SEE (SEP)</u>

It is possible, that different numbers of PCs are ideal for a certain parameter. In this situation the different secondary PCs should be selected, the calibrations recalculated and compared. Very low consistency indicates an overfitting (too many secondary PCs used).

3.18.7 Correlation Spectra

Description	Called also as synchronous 2D correlation spectra.
Use	Shows the correlating spectra.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	96
Тір	See Top view or 3D-surface plot. Pretreatments have influence (press F5 after changing pretreatments).
Details	Cw = X'X = Transpose(X) * X X = pretreated spectra
Related Topic	Correlation Wavelength

3.18.8 Correlation Wavelength

Description	Called also as synchronous 2D correlation wavelength.
Use	Shows the correlating wavelengths.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	97
Тір	See Top view or 3D-surface plot. Pretreatments have influence (press F5 after changing pretreatments).
Details	Cw = XX' = X * Transpose(X)
	X = pretreated spectra
Related Topic	Correlation Spectra

3.18.9 Creator

Description	Contains the creator / user index.
Use	For 1D-scatter and dependency plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	106
Тір	
Details	Creator index is a column vector.
Related Topic	

Description	Contains the creator / user index.
Use	For 1D-scatter and dependency plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	107
Тір	
Details	Creator index is a row vector.
Related Topic	

3.18.10 CV C-Set PRESS

Description	CV C-Set PRESS is the Predicted Residual Error Sum Square for the samples in case they are in the C-Set of the calibration.
Use	To estimate the number of PCs. Compare it with C-Set PRESS of the final calibration.
Method	PCR / PLS
Matrices ID	68
Тір	Optimal number of PC, where CV C-Set PRESS has the minimum value.
Details	Shows the CV C-Set PRESS in function of the number of PCs.
Related Topic	C-Set PRESS

3.18.11 CV Group Index

Description	Before CV the spectra can be grouped: the number indicates, to which group a spectrum belongs.
Use	To find out, which spectra have e.g. same or similar property values with Property equal or Property segment selection. Using CV each spectra belonging to the same group will be at the same calculation step in V-Set.
Method	PCR / PLS
Matrices ID	65
Тір	Can be used for dependency plot or for combined scatter plot.
Details	The group number and the spectra belonging to the groups are listed in the CV calibration protocol. Zero as group index means: the spectrum belongs to no any group (unused spectrum: U-Set).
Related Topic	Cross Validation Grouping; Custom assign Group to Spectra

3.18.12 CV Leverages

Description	Mean of the spectra Leverages during Cross Validation of the V-Set spectra group.
Use	To compare with the "Leverages" of the final calibration with all C-Set spectra to find possible outliers.
Method	PCR / PLS
Matrices ID	70
Тір	High leverages indicate outliers.
Details	For the calculation the primary PCs are taken.
Related Topic	Leverages

3.18.13 CV Predicted Property

Description	CV Predicted Property is the predicted property value for the sample in case it is left out of the calibration.
Use	Compare it with the predicted value of the final calibration and with the original property value.
Method	PCR / PLS
Matrices ID	66
Тір	It should be close to the original property value and to the predicted value of the final calibration.
Details	The CV predicted property is calculated according the selected secondary PCs.
Related Topic	Predicted Property, CV Property Residuum

3.18.14 CV Property Residuum

Description	CV Property Residuum is the difference between the original and CV predicted property value.
Use	It gives information of outlier sample.
Method	PCR / PLS
Matrices ID	67
Тір	It should be as close to zero as possible.
Details	Big differences indicate outliers.
Related Topic	CV Predicted Property

3.18.15 CV Regression Coefficients[1]

Description	It shows as many regression coefficients, as many calculations / groups exist in the CV calibration. Each regression coefficients name has the group name, which was left out.
Use	Help for the optimal secondary PCs selection.
Method	PCR / PLS
Matrices ID	88
Tip	In case each regression coefficients look similar, the calibration is stable. A group with huge deviation indicates outlier.
	Select PCs, which have stable regression coefficients (not noisy).
Details	[1] means the 1st C-Set property. In general for each application only one C- Set property is allowed, so for each property a separate calibration is
	necessary (NIRCal could handle more, but NIRWare is concipated with only one property per calibration for quantitative measurements).
	NOTE
	number corresponds to the CV Group number (ignore the other information).
Related Topic	Regression Coefficient, Regression Coefficients [1]

3.18.16 CV Regression Coefficients[1] Mean

Description	Mean of CV Regression Coefficients [1] for each wavelength.
Use	Used for the CV Regression Coefficients [1] t-test.
Method	PCR / PLS
Matrices ID	90
Тір	
Details	
Related Topic	CV Regression Coefficients[1] t-test

3.18.17 CV Regression Coefficients[1] Sdev

Description	Standard Deviation of CV Regression Coefficients [1] for each wavelength.
Use	Used for the CV Regression Coefficients[1] t-test.
Method	PCR / PLS
Matrices ID	89
Тір	
Details	
Related Topic	CV Regression Coefficients[1] t-test

Description	Uncertainty testing in regression model.
Use	Used for selecting most relevant and stable wavelength.
Method	PCR / PLS
Matrices ID	92
Тір	
Details	
Related Topic	

3.18.18 CV Regression Coefficients[1] t-test

Explanation:

t = Abs(xm) / sx * sqrt(g)

where

t = CV Regression Coefficients[1] t-Test; xm = Regression Coefficients[1] (of the final calibration); sx = CV Regression Coefficients[1] Sdev; g = number of CV groups.

What are good prediction equation coefficients?

- □ Where Abs(xm) is big, there are wavelength with a huge relevance to the prediction equation;
- □ Where sx is small there are stable wavelengths in the prediction equation.

Due to this 2 points above, consider only at t because it combines the aspect of both, so deselect wavelengths with a small t value.

To get a statistical based limit, look in a t-distribution table, select a alpha i.e. 0.05 and use a degree of freedom of g-1.

Recommended readings:

[Uncertainty testing in PLS regression" A.M.C.Davies, Norwich NIR Consultancy, 75 Intwood Road, Cringleford, Norwich NR4 6AA, UK]

http://www.spectroscopyeurope.com/TD_13_2.pdf

3.18.19 CV Regression Coefficients[1] Variance to final Calib

Description	Sum of squared differences of the Property Spectrum of the final calibration to each CV CV Regression Coefficients [1] of each group.
Use	Used for the CV Regression Coefficients [1] t-test.
Method	PCR / PLS
Matrices ID	91
Тір	
Details	Sum(Sqr(B - B(g))
Formular	B8-CV SECV
Related Topic	CV Regression Coefficients[1] t-test

3.18.20 CV SECV

Description	CV SECV: Standard Error Cross Validated
Use	The CV selects the number of secondary PCs, where CV SECV has a
	minimum.
Method	PCR / PLS
Matrices ID	72
Tip	The secondary PCs selection is indicated with red color.
Details	The first local minimum of CV SECV is taken.
Formula	$SECV = \sqrt{\frac{1}{n-p} \sum (v-Y)^2}$ y = reference method value
	 γ = predicted value (of the left out spectra) n = number of batches = number of C-Set spectra p = number of coefficients = number of secondary PCs
Related Topic	SEE

3.18.21 CV Spectra Residuals

Description	The spectra residual of the spectra in the V-Set during CV.
Use	Compare the CV spectra residual with the residual of final calibration to find out possible outliers.
Method	PCR / PLS
Matrices ID	71
Тір	Big CV spectra residual indicates outlier.
Details	The number of primary PCs are used for the calculation.
Related Topic	Residuals, Primary PCs

3.18.22 CV V-Set PRESS

Description	CV V-Set PRESS is the Predicted Residual Error Sum Square for the samples in case they are in the V-Set of the calibration.
Use	To estimate the number of PCs. Compare it with C-Set PRESS of the final calibration.
Method	PCR / PLS
Matrices ID	69
Tip	Optimal number of PC, where CV V-Set PRESS has the minimum value.
Details	Shows the CV C-Set PRESS in function of the number of PCs.
Related Topic	C-Set PRESS, CV C-Set PRESS

3.18.23 C-Set BCAP-PRES

Description	PRES function of the calibration Set comparable with the DOS based BCAP Software.
Use	To estimate the number of factors
Method	PCR / PLS
Matrices ID	21
Тір	
Details	Shows the C-Set PRES (Predicted Error Sum) in function of the number of PCs.
Related Topic	V-Set BCAP Pres

3.18.24 C-Set BIAS

Description	Bias provides information on the average deviation of the predicted values from the true values. BIAS of the calibration set spectra.
Use	To compare with the V-Set Bias.
Method	PCR / PLS
Matrices ID	17
Тір	The C-Set Bias is zero by definition.
Details	Available in the calibration protocol.
Formula	Bias = $1/N \bullet \Sigma (\times_{n} - y_{n})$
Related Topic	V-Set BIAS

3.18.25 C-Set Mean Property

Description	Average property value of the C-Set spectra. Internally used for meancentering.
Use	Compare with the predicted mean property value.
Method	MLR / PCR / PLS
Matrices ID	35
Тір	
Details	It is available in the calibration protocol (C-Set Orig.mean).
Related Topic	Pretreated Property

3.18.26 C-Set Mean Spectrum

Description	Mean spectra of the calibration set.
Use	Internally used for meancentering.
Method	all
Matrices ID	34
Тір	
Details	Pretreatments take effect.
Formula	(k) = [11(k) + 12 (k)+ IN(k)] / N
Related Topic	Pretreated Spectra

It is calculated by averaging the intensity values at each wavelength.

The centre of the new coordinate system is shifted to that point: mean centering.

3.18.27 C-Set PRESS

Description	Calibration Set: Predicted Residual Error Sum Square.
Use	To estimate the number of PCs. Compare it with the V-Set PRESS
Method	PCR / PLS
Matrices ID	13
Tip	Graphics / C-Set Statistics / PRESS
Details	Shows the calibration set PRESS in function of the number of PCs.
Formula	$PRESS = \sum (x_n - y_n)^2$
Related Topic	V-Set PRESS

This function calculates the error sum square as a function of the number of PCs. The term "residual" here refers to the difference between the predicted values and from the original reference values.

The optimum number of PC is always given by the smallest number of PC where the PRESS function for the calibration and for the validation set is approximately **equal and minimal**.

If the error of the prediction diminishes only very slightly by the addition of another PC, it is not worth while to add that PC. This is because higher PCs with little influence will often result in a poorer reproducibility or stability of the calibration.

3.18.28 C-Set Property Dependencies

Description	Regression coefficient between all original C-Set spectra properties.
Use	Shows linear dependencies between different properties.
Method	MLR / PCR / PLS
Matrices ID	36
Тір	Use a table (grid) to check internal property dependencies
Details	Absolute regression coefficient near 1.0 shows that two properties are linearly dependent. Only the property of C-Set Spectra take effect.
Related Topic	Original Property

3.18.29 C-Set Regression Coefficient

Description	Calibration Set Regression Coefficient of Original Property and Predicted Property (also known as correlation coefficient or Pearson's correlation coefficient)
Use	To compare with the V-Set regression Coefficient
Method	PCR / PLS
Matrices ID	18
Тір	Should be as close to 1 as possible.
Details	Visible on the calibration curve and in the calibration protocol.
Formula	$r = \frac{\sum_{n} (x_n - \overline{x})(y_n - \overline{y})}{\sqrt{\sum_{n} (x_n - \overline{x})^2 \sum_{n} (y_n - \overline{y})^2}}$
Related Topic	V-Set Regression Coefficient, Original Property, Predicted Property

The regression coefficient "r" shows how well the predicted values match with the reference values (original property values) on average.

The correlation is rated as acceptable when r > 0.9 is achieved (the error of the conventional reference method goes into the NIR-calibration via the reference values).

The regression curve can be described better with the slope (a) and intercept (b): f(x)=ax+b

3.18.30 C-Set Regression Intercept

Description	Intercept of the regression line equation of the calibration set.
Use	To compare with the V-Set Regression Intercept
Method	PCR / PLS
Matrices ID	19
Тір	A value around zero is expected for a good calibration.
Details	A better description of the C-Set regression coefficient.
Related Topic	C-Set Regression Coefficient, C-Set Regression Slope

3.18.31 C-Set Regression Slope

Description	Slope of the regression line equation of the calibration set.
Use	To compare with the V-Set Regression Slope
Method	PCR / PLS
Matrices ID	20
Tip	A value around one is expected for a good calibration.
Details	A better description of the C-Set regression coefficient.
Related Topic	C-Set Regression Coefficient, C-Set Regression Intercept

3.18.32 C-Set SEE (SEC)

Description	Standard Error of Estimation: Standard Deviation of the Property Residuum of the C-Set Spectra.
Use	To compare with the V-Set SEE (SEP)
Method	PCR / PLS
Matrices ID	16
Тір	It should be as small as possible, but comparable with the standard deviation of the lab method.
Details	Precision. Available in the calibration protocol.
Formula	$SEE = (1/N - 1\sum (x_n - y_n - BIAS)^2)^{1/2}$
Related Topic	V-Set SEE (SEP), Property Residuum

The SEC and SEP provide the magnitude of the **standard deviation** for the calibration set and the independent validation set. The two values should be **as small as possible**, but they are likely to be comparable with the standard deviation of the conventional laboratory method. With an acceptable calibration, the two values are also roughly equal (Consistency: around 100).

Statistically the expected error is with a probability of 68 % within an interval of \pm SEC and with a probability of 95 % within an interval of \pm 2 SEC.

Statistical Results: Precision & Accuracy

95 % of all results within a range of +/- 2×SEP

3.18.33 C-Set Spectra Residuum Limits

Description	The minmax. limit of the C-Set residuum spectra.
Use	Judgement of the number of primary PCs and disturbing (not fitted)
	wavelength range.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	53
Тір	Pretreatments have influence: visible on the Y-axis.
Details	Depends only on the number of primary PCs.
Related Topic	Spectra Residuum, C-Set Spectra Residuum Max, C-Set Spectra Residuum
	Min

3.18.34 C-Set Spectra Residuum Max

Description	Shows the maximun residuum of the C-Set spectra using different number of PCs in the selected wavelength range.
Use	To find the optimum number of primary PCs.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	75
Тір	Small residuum indicates a good reconstruction, but avoid overfitting.
Details	The residuum with e.g. PCs 3 shows the residuum spectra using 1-3 PCs for
	the reconstruction.
Related Topic	Spectra Residuum, Primary PCs

Description	Shows the minimun residuum of the C-Set spectra using different number of PCs in the selected wavelength range.
Use	Find the optimum number of primary PCs.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	76
Тір	Small residuum indicates a good reconstruction, but avoid overfitting.
Details	The residuum with e.g. PCs 3 shows the residuum spectra using 1-3 PCs for
	the reconstruction.
Related Topic	Spectra Residuum, Primary PCs

3.18.35 C-Set Spectra Residuum Min

3.18.36 C-Set Spectra Residuum MinMax

Description	Shows the maximal residual of the C-Set spectra in dependency of the number of PCs.
Use	To find the optimum number of primary PCs.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	93
Тір	Small residuals indicate a good reconstruction, but avoid overfitting.
Details	
Related Topic	Spectra Residuum, Primary PCs

3.18.37 C-Set Std Orig Property

Description	Standard deviation of the original property values of the calibration set spectra (standard deviation of the whole calibration range, X-axis).
Use	To compare with the C-Set Std Pred Property
Method	PCR / PLS
Matrices ID	14
Тір	Gives information about the size of the original calibration range.
Details	It is available in the calibration protocol: C-Set Orig.sdev.
Related Topic	C-Set Std Pred Property Original Property

3.18.38 C-Set Std Pred Property

Description	Standard deviation of the predicted property values of the calibration set spectra (standard deviation of the whole predicted calibration range, Y-axis).
Use	To compare with the C-Set Std orig Property
Method	PCR / PLS
Matrices ID	15
Тір	Gives information about the size of the predicted calibration range.
Details	It is available in the calibration protocol: C-Set Pred.sdev.
Related Topic	C-Set Std Orig Property Predicted Property

3.18.39 C-Set X-PRESS

Description	Predicted Residual Sum Squares of the C-Set spectra.
Use	See the effect of the number of PCs for reconstructing the C-Set spectra.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	73
Тір	Help for selection of the number of primary PCs.
Details	The smallest number of PC, that is still showing changes, should be selected. Compare it with V-Set PRESS.
Related Topic	X-PRESS, V-Set X-PRESS
Description	Statistical test for the determination of the linearity.
---------------	---
Use	Addition information for statistics like regression slope and intercept.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	62
Тір	The C-Set and V-Set selection has a big influence on the Durbin-Watson value.
Details	dw = Durbin-Watson = Sum of consecutive/successive Residual Difference Square / Sum of Residual Square
Related Topic	Calibration Protocol Quantitative

3.18.40 Durbin-Watson Factor Statistics

Definition: "The Durbin-Watson test is a test for first-order serial correlation in the residuals of a time series regression. A value of 2.0 for the Durbin-Watson statistic indicates that there is no serial correlation. This result is biased toward the finding that there is no serial correlation if lagged values of the regressors are in the regression.

Formally, the statistic is: d=(sum from t=2 to t=T of: (et-et-1)2/(sum from t=1 to t=T of: et2) where the series of "et" are the residuals from a regression.

Use Durbin-Watson test to assess correlation between adjacent observations.

$$dw = \frac{\sum_{i=1}^{n} (e_i - e_{i+1})^2}{\sum_{i=1}^{n} (e_i)^2}$$

e = Property residual = (Original property - Predicted property)

The Durbin-Watson test checks for sequential dependence in which each error (and also residual) is correlated with those before and after it in the sequence."

Interpretation:

ranges from 0 (perfect positive correlation) to 4 (perfect negative correlation);

values from 1.5 (= du) to 2.5 (= 4-du) indicate no serious violation of independence (for n > 30)

0 1 1.5 **2** 2.5 3 4

Results of dw:

- \Box 0 <= dw <= 4 always;
- the distribution of dw is symmetric about 2;
- if successive residuals are positively serially correlated, that is positively correlated in their sequence, dw will be near 0;
- if successive residuals are negatively serially correlated, that is negatively correlated in their sequence, dw will be near 4, so that (4 dw) will be near 0.

Abbreviation:

 $dl = dw \ lower \ limit; \\ du = dw \ upper \ limit; \\ k = 1, \ considering 2 \ dimensional \ plots \ like \ regression \ plot; \\ Residuals \ from a \ fittet \ straigth \ line \ Y = b0 + b1^* \ X; \\ n = number \ of \ C-Set \ resp. \ V-Set \ spectra; \\ alpha = 5\% \ significance, \ typical;$

Limits for dl and du after k, n, alpha are to find in reference: [Savin, N.E. and White, K.J., "The Durbin-Watson Test for Serial Correlation with Extreme Sample Sizes or Many Regressors", Econometrica, Vol. 45, 1977, pp. 1989-1996.]

Order : "The observations and residuals have a natural order."

The spectra are internal for the Durbin-Watson calculation ascending sorted according the original property values of each properties. By the same property values the original sequence will be kept.

C-Set / V-Set : the dw will be calculated separately. If the V-Set is empty dw = 2 protocoled.

Durbin-Watson test is available in NIRCal:

- □ the calibration protocol of quantitative calibration has the dw value for C-Set and V-Set;
- $\hfill\square$ the dw values are in the matrices.

3.18.41	Eigenvalue
	= gointaiao

Description	Corresponding Eigenvalues for PCs and scores.
Use	To select the number of primary PCs.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	5
Тір	The eigenvalue matrix is in diagonal form.
Details	High eigenvalue describes high spectral influence.
Related Topic	Scores, Primary PCs, Loadings

Eigenvalue gives the information about the importance of the PCs: high value means high information, small value indicates less information.

Explanation of mathematical correlation of the loadings and eigenvalue using Mahalanobis distance of the PCA (PCR, CLU, SIMCA):

 $\begin{aligned} FF' &= \hat{\lambda} \\ \left| F_{l} \right| &= \sqrt{\hat{\lambda}_{l}} \\ LL' &= I \end{aligned}$

 $\left|L_{i}\right|=1$

where:

- □ F factor / loadings matrix
- □ F` transposed factor / loadings matrix;
- â eigenvalue
- □ L scores matrix;
- L` transposed score matrix;
- □ I identity matrix (diagonal matrix with 1).

The equation of the spectra reconstruction using this terminology:

 $X = \vec{1}' \, \vec{\overline{X}} + L' F + R$

This is equivalent to the equation given by the **Loadings (links)** explanation. The results are different using Mahalanobis or Euclidean distance:

	Mahalanobis	Euclidean
FF '	Diagonal matrix with eigenvalue	Diagonal matrix with 1
LL '	Diagonal matrix with 1	Diagonal matrix with eigenvalue

The calculation of eigenvalue is different by the PLS method: the eigenvalue are calculated under consideration of the property value variance. Therefore iterative algorithms, like nipals, are used.

3.18.42 Instrument

Description	Contains the used instrument index.
Use	For 1D-scatter and dependency plots. Can be used for Outlier selection.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	104
Tip	
Details	Instrument index is a column vector.
Related Topic	

Description	Contains the used instrument index.
Use	For 1D-scatter and dependency plots. Can be used for Outlier selection.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	105
Тір	
Details	Instrument index is a row vector.
Related Topic	

3.18.43 Leverages

Description	Mahalanobis distance from the center of the score space to each spectra.
Use	To find Leverage Outliers.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	32
Тір	
Details	All primary PCs are used. The secondary PC selection has no effect on the
	leverages.
Related Topic	<u>Scores</u>

Description	Contains the Leverages against the PCs for the different properties (Cluster)
Description	Contains the Ecverages against the Fostion the dimeterit properties (Ordster).
Use	For PC selection.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	94
Тір	
Details	
Related Topic	Leverages

3.18.44 Loadings or Principal Components

Description	Loadings build up the base for reconstructing the spectra together with the scores and the Eigenvalues.
Use	Look for the wavelengths activity in the loadings and compare it with the original spectra.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	4
Тір	Mark interesting bands in the wavelengths and have a look to the spectra. The wavelengths selection will also appear in the plot.
Details	Loadings are called also Principal Components or sometimes till called "factors" (NIRCal 4 terminology). The maximum available number of PCs calculated is called the primary PCs. The selected PCs for predicting properties are called secondary PCs.
Related Topic	Scores, Eigenvalues

The loadings are artificial difference spectra. Only principal components with characteristic spectral information should be used.

The formula of spectra reconstruction:

$$I_n(k) = \langle I(k) \rangle + \sum_{i=1}^{\max i} v_{in} \bullet U_i(k) + R_n(k)$$

where:

- \Box In (k): spectrum (n: number of spectra, k: wavenumber);
- \Box <I (k)>: mean spectrum;
- □ v in : scores (i: number of PC);
- U i (k): PCs / loadings;
- R n : residuum spectrum.

A more detailed formula for the matrix is: Eigenvalue.

Minimum number of loading is one, the maximum number of PCs is never higher than the number of C-Set spectra or C-Set Wavelengths.

See the PCs under the menubar: Graphics / Loadings.

3.18.45 Original Property

Description	Original property values of all spectra in the project. (Dependent variable)
Use	Defines the concentrations contained or classification of the spectra.
Method	all
Matrices ID	1
Тір	Editing is possible in NIRWare: Sample Management.
Details	Table / Properties / Original
Related Topic	Pretreated Property, Predicted Property

In cluster method each spectra is assigned to exactly one property by setting a 1 (one) to the class, where it belongs, all other properties must have a value of 0 (zero).

In quantitative calibrations the original property values are equal to the results of the laboratory methods referred to.

	9
Description	Original Spectra in the project (Independent variable)
Use	Overview of all spectra in the project.
Method	all
Matrices ID	0
Related Topic	Pretreated Spectra

3.18.46 Original Spectra

Original spectra are plotted as the intensity values (reflectance, transmittance, transflectance) were measured according the wavelengths.

Available in the Menubar: Graphics / Spectra / Original.

The values are also available in table form.

3.18.47 PCs or Factor

Description	Contains the PC index number.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	86
Тір	
Details	PC is a column vector.
Related Topic	

Description	Contains the PC index number.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	87
Тір	
Details	PC is a row vector.
Related Topic	

3.18.48 PCR B-Matrix

Description	Shows the influence of the PCs to the property value.
Use	Useful for secondary PC selection.
Method	PCR
Matrices ID	7
Тір	Select the PCs with high absolute correlation value to optimize the prediction.
Details	Also known as correlation coefficient or B-matrix . Depends only from the number of primary factors. The selected secondary PCs take no effect on the PCR B-matrix.
Related Topic	Scores, Original Property

The PCR algorithm makes as first step a Principal Component Analysis and the second step is a Multiple Linear Regression. In the MLR the scores are multiplied with the correlation coefficients: B-values.

Formula of MLR by PCR:

Property value = ymean + b1 * v1 + b2 * v2 + b3 * v3 +.....

where: b : correlation coefficient; v : score; 1-2: number of PC.

Here the 3. PC has very small B-value, so only the first 2 PCs are important for the parameter.

NOTE

The B-values are **not normalized between -1 and + 1** as usual for correlation coefficients, because the scores are already normalized using the Mahalanobis distance.

3.18.49 Predicted Property

Description	The predicted property values for all spectra in the project with the activated calibration. (Estimate of dependent variable)
Use	Main result of a calibration.
Method	all
Matrices ID	10
Тір	The original and predicted property values should be as similar as possible.
Details	The prediction depends on the selected secondary PCs.
Related Topic	Property Residuum, Original Property

In cluster method the spectra get a 1 (one) to a class, if it is identified as such (distance and residual limits are fulfilled).

In quantitative calibrations the predicted property values are the results of the NIR methods.

3.18.50 Pretreated Property

Description	A copy of Original Property
Method	all
Matrices ID	3
Тір	Editing is not allowed.
Details	In a later version there will be special property pretreatments.
Related Topic	Original Property

3.18.51 Pretreated Spectra

Description	Original spectra with the selected data pretreatments applied.
Use	Looks at the effects of the various data pretreatments.
Method	all
Matrices ID	2
Tip	Try zooming to see minor effects
Details	Without any Pretreatments the Pretreated Spectra are identical to the Original Spectra. Each Pretreatment works directly on the Pretreated Spectra as input and the result are the Pretreated Spectra again. In this way, it is possible to build up a sequence with Pretreatments.
Related Topic	Original Spectra, Pretreatments

Pretreated spectra are plotted as the intensity values after the pretreatment or pretreatment sequence according to the wavelengths.

Available in the menubar: Graphics / Spectra / Pretreated.

The applied pretreatments are visible on the intensity axis in different plots related to the spectra intensity (e.g. Spectra Residuum). The used calibration wavelength is marked red.

3.18.52 Property

Description	Contains the property index.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	84
Тір	
Details	Property is a column vector.
Related Topic	

Description	Contains the property index.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	85
Тір	
Details	Property is a row vector.
Related Topic	

Description	Contains the first C-Set Property[1] Values
Use	For 1D-scatter plots and dependency plots
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	102
Тір	
Details	Property values are column vectors.
Related Topic	Residuals, Primary PCs, Blow Up Limits

Description	Contains the first C-Set Property[1] Values
Use	For 1D-scatter plots and dependency plots
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	103
Тір	
Details	Property values are row vectors.
Related Topic	Residuals, Primary PCs, Blow Up Limits

3.18.53 Property Adjacency

Description	The minimum Mahalanobis distance in score space between the nearest two C-Set spectra of property A to property B, C, etc
Use	See neighborhood relationships between the properties for all PC's. The first nearest distance is reported in the <u>calibration protocol</u> under "Property Separation / Distance".
Method	Cluster (CLU)
Matrices ID	49
Тір	Look at it in a 2D-Plot in top view to see hidden effects.
Details	Secondary PCs take an effect. Calculation is based on C-Set spectra and C- Set properties.
Related Topic	Score Adjacency

Description	The center position (expressed as score) of the smallest possible box in the score space that contains each C-Set spectra of a property.
Use	Shows the distribution of the properties in the score space.
Method	Cluster (CLU) / SIMCA
Matrices ID	46
Тір	In higher PC dimensions the property box center falls together. These higher PCs are useless for property separation, so remove them from the secondary PC selection. See also the Property Box Radii matrix.
Details	Only C-Set spectra and C-Set property are used for calculations.
Related Topic	Property Box Radii

3.18.54 Property Box Center

3.18.55 Property Box Center Uniformity

Description	Uniformity of the distribution of the Property Box Centers.
Use	Additional information for PCs selection.
Method	Cluster (CLU) / SIMCA
Matrices ID	51
Тір	
Details	Estimates the place consumption of all properties per PC. If several properties lay near each other in a PC, the PC becomes a low uniformity value. A uniformity value of 1.0 is ideal.
Related Topic	Property Box Radii, Property Box Center, Scores

3.18.56 Property Box Radii

Description	The distance from the Property Box Center to each wall of the smallest property box.
Use	Shows the score distribution of the properties versus PCs. One of the best matrix to select the secondary PCs for the cluster method.
Method	Cluster (CLU) / SIMCA
Matrices ID	47
Tip	Small values (normally bellow 0.1) indicate good reproducibility. To get good separation of the properties select these PCs for the secondary PCs.
Details	
Related Topic	Property Box Center

3.18.57 Property F-Test backward

Description	Significance of PCs starting at the minimum of the SEP function.
Use	For secondary principal component selection.
Method	PCR / PLS
Matrices ID	37
Tip	
Details	Starting at the PCs they set the SEP value to the minimum, take PCs away as long as no significant change for the worse of the SEP value occurs. This process is called backward search operation.
Related Topic	Property F-Test forward

Description	Significance of additional PCs.
Use	For secondary principal component selection.
Method	PCR / PLS
Matrices ID	38
Тір	
Details	Alternative for proofing the robustness of a calibration with a backward search operation is to start at a certain calibration checking for additional PCs that will improve the SEP value significantly.
Related Topic	Property F-Test backward

3.18.58 Property F-Test forward

3.18.59 Property Interference

Description	Interference = Property Score Extension / Property Nearest Neighbor
Use	Judgement of the influence of the property for the cluster separation.
Method	Cluster (CLU)
Matrices ID	61
Тір	Small interference indicates a good influence of the property for the calibration.
Details	Property Interference is the relationship between the size of a cluster and distance to the nearest property. The interference values are listed in the calibration protocol.
Related Topic	Property Score Extension, Property Nearest Neighbor

3.18.60 Property missing Values

Description	Spectra, which have no defined property value (0 = value missing; 1 = value available) NOTE This has no relevance in NIRCal file-mode, only in database-mode.
Use	Find spectra, which have no property value
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	115
Тір	Edit the property values in Manager Console/ Sample Management
Details	Spectra without property values can not be used for the C- and V-Set.
Related Topic	Original Property

Interpretation:

- □ 1 means: there is defined property value,
- 0 means: missing property value = there is no defined property value.

3.18.61 Property Nearest Neighbor

Description	The smallest Mahalanobis distance between the property mean to the next
	property center.
Use	Judge the property separation.
Method	Cluster (CLU)
Matrices ID	60
Тір	High values indicate good separation.
Details	These values together with the next neighbors are listed in the calibration
	protocol.
Related Topic	Scores

Description	The difference between the original property and the predicted property.
Use	See where (property, spectra) the major differences are.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	11
Tip	
Details	
Related Topic	Original Property, Predicted Property

3.18.62 Property Residuum

Qualitative calibrations

The predicted property value depends on the cluster, in which the spectrum is located. For the property residuum, only a value of 0 is acceptable. Property residuum zero means all spectra are in the correct cluster.

Property residuum +1 means that a spectrum is outside any cluster: it is not identified. Property residuum -1 means that a spectrum is in a wrong cluster: it is false identified.

Quantitative calibrations

The values should be as small as possible. Property residuum zero means, the predicted NIR value is exactly the same, as the referring lab result. An acceptable range is equal to the standard deviation of the lab method.

3.18.63 Property Score Diffusion

Description	Property Score Diffusion is the scaled disorder, number of different property spectra according the scores of different PC per property. The scaling is made by the number of spectra of a property.
Use	Useful for secondary PCs selection in higher dimensional space (> 3).
Method	Cluster (CLU)
Matrices ID	58
Тір	It is not depending on the size of the score scattering, only the number of interchanging of the properties are important. Shows, which property is
	mixed and shuffeled with other property spectra. This plot is very informative in Top View. Dark means low diffusion, white means high diffusion. Select the PCs, by which more than one dark area (property) appears. Two dark areas means: these two properties are separated with that PC. Positioning the mouse over the area, the property name is visible in the Status bar.
Details	Small disorder values indicate a clear separation for the property of a given PC. Property Score Diffusion is calculated only for the C-Set spectra.
Related Topic	Scores, Secondary PCs, Property Score Disorder

Algorithm (unpublished) by Roman Bossart 18. June 1998

3.18.64 Property Score Disorder

Description	Property Score Disorder: number of different property spectra according the scores of different PC.
Use	Useful for secondary PCs selection in higher dimensional space (> 3).
Method	Cluster (CLU)
Matrices ID	57
Тір	The smallest number of property score disorder = (number of selected property -1). This value indicates a clear separation of the different properties.
Details	Small disorder values indicate a clear separation (how many times the color is changing with the score of a PC). Property Score Disorder is calculated only for the C-Set spectra.
Related Topic	Scores, Secondary PCs, Property Score Diffusion

Disorder = Sum (Property Score Diffusion) * (number of C-Set spectra) / (number of property)

3.18.65 Property Score Extension

Description	Property Score Extension: the maximal distance between two C-Set spectra of the same property.
Use	Useful for secondary PCs selection in higher dimensional space (> 3).
Method	Cluster (CLU) / SIMCA
Matrices ID	59
Тір	Small values indicates good reproducibility and repeatability. PCs with small extension are prefered for secondary PC selection.
Details	Property Score Extension is calculated only for the C-Set spectra. The extension values are listed in the calibration protocol.
Related Topic	Scores, Property Score Disorder, Property Score Diffusion

3.18.66 Property Wavelength Regression

Description	Contains all regression coefficients between each wavelength of all the calibration set spectra and the property value.
Use	In a 2D-plot very useful to optimize the wavelength selection for all properties. Especially useful for quantitative methods.
Method	all but not SIMCA
Matrices ID	44
Тір	Absolute values near 1.0 shows strong wavelength dependencies with the corresponding property.
Details	Dependencies:
	pretreatments
	C-Set spectra
	Calibration property
Related Topic	Property Spectra

3.18.67 Quant Calib. Statistics

Description	Contains all statistics of the quantitative calibration protocol.
Use	Use it as a fast or short protocol.
Method	MLR / PCR / PLS
Matrices ID	42
Tip	Open this matrix as Table (Grid).
Details	Summary of the relevant statistics matrices.
Related Topic	

3.18.68 **Q-Values** Description Value between 0 and 1. 0 means a bad 1 would be a good calibration. But 1 cannot be reached. Q-Values depending on the number of PCs. There is a warning limit for the stored calibration: 0.8 for qualitative 0.6 for quantitative Use Select the number of secondary PC according the highest Q-Value. Method PCR / PLS / Cluster (CLU) / SIMCA Matrices ID 64 In generell: the highest the Q-Value the better the calibration. Tip Details The Q-Value is in the calibration protocol, see explanation: LINK: Calibration Protocol Qualitative

 wizard.

 Related Topic
 Quant Calib. Statistics, Cluster per Property, Spectra Residuals too big

It is used for selection of the best calibrations for the automatic Calibration

Explanation of the Q-Value calculation of quantitative calibration:

Value	Weights	Formula for value	General term	Aspects of a good calibration	Detail
wNum NotC	10	Number of C-Set spectra with Residual too big	Rejection of known	Rejection count of known should be 0	
wNum NotV	1	Number of V-Set spectra with Residual too big	Rejection of unknown	Rejection count of unknown should be 0	
wQa	2	Abs (SEE-SEP)/ (Abs(SEP)+1.0)	Relative Consistency	C-Set and V- Set should have similar low standard error of prediction	BIAS corrected
wQb	2	Abs (VsetBIAS)/ Abs(Range)	Weighted BIAS	The absolute V-Set BIAS should be low	
wQc	1	1-VsetRegr	Validity	The V-Set regression coefficient should be near 1	
wQd	1	Abs(CsetRegr-VsetRegr)	Comparability	C-Set and V- Set should have similar high regression	
wQe	1	SEP / Abs(Range)	Precision	The V-Set standard error of prediction should be low	BIAS corrected
wQf	1	Abs(RSS)/Abs(Range)	Weighted Accuracy	The V-Set Residual Sum of squares= RSS should be low	not BIAS corrected

Q-Value V5: Q = 1 / (1 + sum (weights * value))

NOTE

The weights are changed between the NIRCal 4.21 Q-Value calculation weights, so the NIRCal 5 Q-Values are differing against NIRCal 4.21.

The Q-Value calculation is **not changed for the Cluster** calibration between NIRCal 4.21 and NIRCal 5.

Explanation of the Q-Value calculation of qualitative calibration:

General term	Aspects of a good calibration	Weights
C-Set false identified	Should be zero (indicates wrong user settings)	10
C-Set not identified	Should be zero (indicates wrong user settings)	10
V-Set false identified	Should be zero (indicates wrong sample or calibration)	5
V-Set not identified	Should be zero (residual or distance problem)	1
Cluster Index "Number of Clusters"	"Number of C-Set Properties": should be zero	1
Property Uniformity	Should be small: the spectra spreading in the clusters is uniform	1
Property Interference	Should be small: the clusters are independent from each other	0.1

$$Q-Value = \frac{1}{1+\sum_{i=1}^{n} w_i v_i}$$

w : weights v : value n : number of aspects

The Q-Value is normally high for CV and SIMCA calibrations, while a quantitative calibration with Cross Validation has empty V-Set (Weighted Accuracy = 0), a qualitative calibration using SIMCA has no neighboring substance (single property calibration: property interference = 0).

Description	Contains the real time of the spectra creation time in seconds.
Use	For 1D-scatter and dependency plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	98
Тір	
Details	Real time is a column vector.
Related Topic	
Description	Contains the real time of the spectra creation time in seconds.
Use	For 1D-scatter and dependency plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	99
Тір	
Details	Real time is a row vector.
Related Topic	

3.18.69 Real time

Description	Reconstructed pretreated spectra with the number of primary PCs.
Use	See how good the reconstruction works.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	8
Тір	It should be as similar to the pretreated spectra as possible.
Details	Reconstructed spectra are plotted as the intensity values after the used pretreatments according the wavelengths after the reconstruction of the PCA using the primary PCs.
Related Topic	Pretreated Spectra Spectra Residuum

3.18.70 Reconstructed Spectra

Available in the menubar: Graphics / Spectra / Reconstructed.

A reconstructed spectrum is the sum of [mean spectrum and the sum of PCs multiplied with the scores values].

3.18.71 Residuals

Description	Contains the residual value against the PCs for the different spectra.
Use	For selection of the primary PCs.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	95
Tip	Select the smallest number of PCs, where the residuals are similar small and do not change anymore.
Details	Residual is the sum of squares of the residuum spectrum. Residuum spectrum = pretreated spectrum - reconstructed spectrum.
Related Topic	Spectra Residuum, X-PRESS

3.18.72 Regression Coefficients [1]

Description	It shows the regression coefficients in function of the PCs. Each regression coefficients name has the name of the PC.
Use	Help for the optimal secondary PCs selection.
Method	PCR / PLS
Matrices ID	79
Тір	Select PCs, which have stable regression coefficients (not noisy).
Details	[1] means the 1st C-Set property. In general for each quantitative application only one C-Set property is allowed, so for each property a separate
	calibration is necessary (NIRCal could handle more in file-mode, but NIRWare is conceived with only one property per calibration for quantitative measurements).
Related Topic	Regression Coefficient, CV Regression Coefficients[1]

3.18.73 Regression Coefficients / Property Spectra (CLU)

Description	Spectra of the property. This matrices is called Regression Coefficient for quantitative calibration and Property Spectra for Cluster calibrations.
Use	Useful for wavelength selection.
Method	PCR / PLS / Cluster (CLU)
Matrices ID	31
Тір	Select wavelengths with high absolute values.
Details	Cluster method calculates the mean spectra of all C-Set spectra with the
	same property.
Related Topic	Loadings, Property Wavelength Regression

In quantitative calibration the Regression Coefficients is used for building up the prediction equation:

Y = (X-X mean) * P + Y mean

Where:

Y	predicted property value
Х	pretreated spectrum
X mean	Mean of C-Set spectra ("C-Set Mean Spectrum")
Y mean	Mean Property value of the C-Set spectra ("C-Set Mean Property")
Р	Regression Coefficients

The Regression Coefficients can be opened as Excel table in the Regression Coefficients plot pressing "G".

The value of "Y mean" can be found in the Matrices: "C-Set Mean Property".

Description	Contains the sample index number.
Use	For 1D-scatter plots. Can be used for Outlier selection.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	113
Тір	Spectra from the same sample get the same sample index.
Details	Sample is a column vector.
Related Topic	

Description	Contains the sample index number.
Use	For 1D-scatter plots. Can be used for Outlier selection.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	114
Тір	Spectra from the same sample get the same sample index.
Details	Sample is a row vector.
Related Topic	

3.18.75 Scores

Description	Each spectra is placed in the n-dimensional score space. The position of the spectra is given by the n-dimensional coordinate of the scores.
Use	Similar spectra are placed near each other. Look for clustering effects and for Outliers.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	6
Тір	Looks very nice in a 3D scatter plot or 2D scatter plots.
Details	Vin: score of the i PC and n spectrum
Formula	Reconstruction of a spectrum $In(k) = \langle I(k) \rangle + \sum \forall in \cdot Ui(k) + Rn$
Related Topic	Loadings

Scores are the weightings of each PC after the pretreated spectrum has been transformed by PCA. A score is the portion of a PC used for the spectra reconstruction. Each spectrum has different scores for each primary factors.

The scores are visible in a 2 or 3 dimensional scatter plot.

In qualitative calibration, the separate scores determine the number of secondary PCs.

There is a clear separation of the 4 different properties spectra according to the PC 1 and 2.

There is no separation with the scores of PC 4, this PC is necessary for the acetone spectra.

Here PC 1, 2 and 3 are secondary PCs, the PC 4 is not a secondary PC.

The separation with 3 selected calibration PCs is visible in a 3 D graphics.

3.18.76 Score Adjacency

Description	Distance in score space between each spectra against all others.
Use	The neighborhood relationships between the spectra for all PCs at once. For special interest with the Cluster method.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	40
Тір	Look at it in a 2D-Plot in top view to see hidden effects.
Details	Secondary PCs take an effect.
Related Topic	Scores, Leverage

3.18.77 SEP Generalized Cross Validation

Description	The determination of the SEP (Standard Error of Prediction) with a Cross Validation (CV) is very time consuming.
	The SEP value determined with the GCV (Generalized Cross Validation) process is from theoretically side at least equally good as the SEP of a conventional CV process.
Use	Select the number of PC, where the SEP Generalized Cross Validation has a minimum.
Method	MLR / PCR / PLS
Matrices ID	39
Тір	While SEP Generalized Cross Validation does not always have a minimum, it is not always optimal to use this for the secondary PCs selection.
Details	See also: Gene H. Golub, Michael Heath, and grace Wahba. Generalized crossvalidation as a method for choosing a good ridge parameter. Technometrics, 21(2):215-223,1979.
Related Topic	V-Set SEE (SEP)

Formula:

$$SEP_{GEV} = \frac{\sqrt{n * CSetPRESS(a)}}{n - a}$$

where:

- n : number of calibration spectra
- □ a : number of secondary PCs

3.18.78 Spectra

Description	Contains the spectra index number.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	80
Тір	
Details	Spectra is a column vector.
Related Topic	

Description	Contains the spectra index number.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	81
Тір	
Details	Spectra is a row vector.
Related Topic	

Description	Each spectra is assigned to exactly that property index with the 1 (one) in the Original Property matrix. The property index value is in the range from 0 to the number of properties minus 1.
Use	Use it to select all spectra with the same property (see Tip).
Method	Cluster (CLU) / SIMCA / PCR / PLS / MLR
Matrices ID	48
Tip	 Open it as 2D-plot, PopUp Menu -> Options -> Show All Values, Set in PopUp Menu -> Transpose Data. Set in PopUp Menu -> Option -> Mouse Window Select. Select with the mouse the number 0. Then all spectra with the first property are selected. Save this configurated plot in a workspace i.e. as "Select spectra by property Plot".
Details	 The following special cases are defined by codes (negative numbers) -1 : the spectrum is assigned to more than one property -2 : the spectrum is not assigned to a property (unknown identity) -3 : the property values of the spectrum seem to be for quantitative use and not for qualitative (cluster).
Related Topic	Original Property

3.18.79 Spectra Property Index

3.18.80 Spectra Radii

Description	Each C-Set spectra is covered by a sphere. Its center, the spectra scores and one radius for all secondary PCs dimensions define the sphere.
Use	The spheres define the space where the well known spectra with the defined property can be.
Method	Cluster (CLU) / SIMCA
Matrices ID	50
Тір	Good views are: Graphics -> Scores -> 3D-Scatter Graphics -> Scores -> Multi 2D-Scatter The spectra Radii depend on the secondary PCs selection .
Details	There are 3 Radii calculation formula and the Radii Blow Up limit can be also changed by the user.
Related Topic	Property Box Radii, Property Box Center

The Radii Blow Up limit and the Radius calculation formula (1 and 2: for Cluster, 3: only for SIMCA) can be changed under:

Calibration -> Parameter -> Blow Up Limit -> Radii and Radius formula.

All radii can be blowed up by a constant scale. The scale can be in the range from near zero to 1000 (zero makes no sense!).

See: Cluster (CLU)

NOTE

Changing the calculation formula and blow up parameter can modify the calibration in a dramatic way. An optimum between robustness and selectivity of the calibration should be found.

•	
Description	The RMSD (Root Mean Squared Deviation) of the spectra residuum.
Use	To look at residual outlier.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	41
Тір	Special tip to optimize the calibration
Details	The secondary PCs take no effect.
Formula	In(k) = <l(k)> + ∑vin • Ui (k) + Rn</l(k)>
Related Topic	X-PRESS, Spectra Residuum

3.18.81 Spectra Residuals

Indicates the difference of the pretreated spectra and the reconstructed spectra with the number of primary PCs.

For the application the **allowed residual** is in most cases: **2x C-Set maximum residual**. The default blow up limit of 2 can be adjusted by the user.

3.18.82 Spectra Residuals too big

Description	Number of spectra with too big residual.
Use	Additional information for primary PCs selection or for outlier search.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	54
Тір	The number of spectra with residual too big should be 0.
Details	The allowed residual is = 2^* max. C-Set residual. Using this calculation only
	V-Set spectra can be out of the limit.
	2 is the default of residual blow up, can be edited by the user.
Related Topic	Residuals, Primary PCs

In a good calibration all spectra should fall within the allowed residual limits, so it should be zero in this window.

3.18.83 Spectra Residuum

Description	Difference spectra between the pretreated spectra and the reconstructed spectra.
Use	See where (wavelength, spectra) the major differences are.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	9
Тір	To see that the C-Set spectra are not overfitted open this plot twice. In the first set the visibility to the C-Set spectra, in the other set the visibility to the V-Set spectra. The two sets should be similar.
Details	
Related Topic	Loadings, Pretreated Spectra, X-PRESS, Reconstructed Spectra

The spectra residuum shows the difference spectrum for all pretreated spectra and the corresponding reconstructed spectra calculated with the number of primary principal components. The size of these difference spectra should be roughly the same for C- and V-Set, when the correct number of primary

principal components has been selected. These difference spectra should have only noisy signal, but no unfitted peaks.

3.18.84 Spectrum Nearest Neighbor

Description	Spectrum Nearest Neighbor is the smallest distance in the score plots between two spectra.
Use	Check, which spectra have big deviation. Similar small distances indicate good repeatability and reproducibility.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	63
Тір	The Spectrum Nearest Neighbor vs. Spectra scatter plot can help to reduce redundancy with deleting some spectra with very small distance or to find outliers with selecting spectra with high distance.
Details	The distance is calculated according the selected secondary PCs.
Related Topic	Scores
Description	Spectrum Nearest Neighbor is the smallest distance in the score plots between two spectra (distance vs. PC).
Use	Check, which spectra have big deviation. Similar small distances indicate good repeatability and reproducibility.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	126
Тір	
Details	The distance is calculated according the selected secondary PCs.
Related Topic	Scores

3.18.85 Spectrum Nearest Neighbor Index

Description	Spectrum Nearest Neighbor Index contains the spectrum index of the nearest spectrum in the calibration. Best shown as 1D-Scatter-Plot for selected spectra. This matrix is related to "Spectrum Nearest Neighbor" which contains the Mahalanobis Distance between nearest spectra pairs.
Use	Check, which spectra have big deviation. Similar small distances indicate good repeatability and reproducibility.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	124
Tip	The Spectrum Nearest Neighbor Index vs. Spectra scatter plot can help to reduce redundancy with deleting some spectra with very small distance or to find outliers with selecting spectra with high distance.
Details	The distance is calculated according the selected secondary PCs.
Related Topic	Scores
Description	Spectrum Nearest Neighbor Index contains the spectrum index of the nearest spectrum in the calibration. Best shown as 1D-Scatter-Plot for selected spectra. This matrix is related to "Spectrum Nearest Neighbor" which contains the Mahalanobis Distance between nearest spectra pairs (spectra vs. PC).
Use	Check, which spectra have big deviation. Similar small distances indicate good repeatability and reproducibility.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	125
Тір	
Details	The distance is calculated according the selected secondary PCs.
Related Topic	Scores

3.18.86 Time

Description	Contains the spectra creation time as an increasing index
Use	Dependency plots, 1D scatter plots
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	100
Тір	
Details	
Related Topic	Residuals, Primary PCs, Blow Up Limits

Description	Contains the spectra creation time as an increasing index	
Use	Dependency plots, 1D scatter plots	
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR	
Matrices ID	101	
Тір		
Details		
Related Topic	Residuals, Primary PCs, Blow Up Limits	

3.18.87 V-Set BCAP-PRES

Description	PRES function of Validation Set comparable with the BCAP software.	
Use	To estimate the number of PCs.	
Method	PCR / PLS	
Matrices ID	30	
Тір		
Details	Shows the V-Set PRES (Predicted Error Sum) in function of the number of PCs.	
Related Topic	C-Set BCAP PRES	

3.18.88 V-Set BIAS

Description	BIAS of the validation set spectra.	
Use	Judge the V-Set results.	
Method	PCR / PLS	
Matrices ID	26	
Tip	Should be as close to zero as possible.	
Details	This is a value for accuracy. Available in the calibration protocol.	
Formula	$Bias = 1/N \bullet \Sigma (\times_{n} - y_{n})$	
Related Topic	C-Set BIAS	

The V-Set Bias provides information on the average deviation of the predicted values from the true values. This value gives information on a systematic deviation of the calibration and therefore should be as close to zero as possible.

The C-Set Bias is zero by definition.

Precision & Accuracy

Example: 10 shots on a target

Precise, but not accurate

SEE/SEP: small Bias: big SEE/SEP: big Bias: small

not precise

Accurate and precise

SEE/SEP: small Bias: small

3.18.89 V-Set PRESS

Description	Validation Set: Predicted Residual Error Sum Square
Use	To estimate the number of PCs. Compare it with the C-Set PRESS.
Method	PCR / PLS
Matrices ID	22
Тір	Graphics / V-Set Statistics / PRESS
Details	Shows the validation set PRESS in function of the number of PCs.
Formula	$PRESS = \sum (x_n - y_n)^2$
Related Topic	<u>C-Set PRESS</u>

This function calculates the error sum square as a function of the number of PCs. The term "residual" here refers to the difference between the predicted values and the reference values.

The optimum number of PC is always given by the smallest number of PC where the PRESS function for the calibration and for the validation set is approximately **equal and minimal**.

If the error of the prediction diminishes only very slightly by the addition of another PC, it is not worth while to add that PC. This is because higher PCs with little influence will often result in a poorer reproducibility or stability of the calibration.

3.18.90 V-Set Regression Coefficient

Description	Validation Set Regression Coefficient of Original Property and Predicted Property (also known as correlation coefficient or Pearson's correlation coefficient)	
Use	To compare with the C-Set regression Coefficient	
Method	PCR / PLS	
Matrices ID	27	
Тір	Should be as close to 1 as possible.	
Details	Visible on the calibration curve and in the calibration protocol.	
Formula	$r = \frac{\sum_{n} (x_n - \overline{x})(y_n - \overline{y})}{\sqrt{\sum_{n} (x_n - \overline{x})^2 \sum_{n} (y_n - \overline{y})^2}}$	
Related Topic	C-Set Regression Coefficient, Original Property, Predicted Property	

The regression coefficient "r" shows, how well the predicted values match with the reference values (original property values) on average.

The correlation is rated as acceptable when r > 0.9 is achieved (the error of the conventional reference method goes into the NIR-calibration via the reference values).

The regression curve can be described better with the slope (a) and intercept (b): f(x) = ax + b

	•
Description	Validation Set Regression Intercept of Original Property and Predicted
	Property
Use	To compare with the C-Set Regression Intercept
Method	PCR / PLS
Matrices ID	28
Тір	A value around zero is expected for a good calibration.
Details	A better description of the V-Set regression coefficient.
Related Topic	V-Set Regression Coefficient, V-Set Regression Slope

3.18.91 V-Set Regression Intercept

3.18.92 V-Set Regression Slope

Description	Slope of the regression line equation of the validation set.	
Use	To compare with the C-Set Regression Slope	
Method	PCR / PLS	
Matrices ID	29	
Тір	A value around one is expected for a good calibration.	
Details	A better description of the V-Set regression coefficient.	
Related Topic	V-Set Regression Coefficient, V-Set Regression Intercept	

3.18.93 V-Set SEE (SEP)

Description	Standard Error of Prediction: Standard Deviation of the Property Residuum of the V-Set Spectra.
Use	To compare with the C-Set SEE (SEC)
Method	PCR / PLS (only with VS mode)
Matrices ID	25
Тір	It should be as small as possible, but comparable with the standard deviation of the lab method.
Details	Precision. Available in the calibration protocol.
Formula	$SEP = (1/N - 1\sum (x_n - y_n - BIAS)^2)^{1/2}$
Related Topic	C-Set SEE (SEP)

The SEE and SEP provide the magnitude of the **standard deviation** for the calibration set and the independent validation set. The two values should be **as small as possible**, but they are likely to be comparable with the standard deviation of the conventional laboratory method. With an acceptable calibration, the two values are also roughly equal (Consistency: around 100).

Statistically the expected error is with a probability of 68 % within an interval of \pm SEP and with a probability of 95 % within an interval of \pm 2 SEP.

If the SEP is significantly higher than the SEE, the calibration is overfitted (too many secondary PCs are selected).

Statistical Results: Precision & Accuracy

95 % of all results within a range of +/- $2\times$ SEP

3.18.94 V-Set Spectra Residuum Max

Description	Shows the maximum residuum of the V-Set spectra using different number of PCs in the selected wavelength range.	
Use	To find the optimum number of primary PCs.	
Method	PCR / PLS / Cluster (CLU) / SIMCA	
Matrices ID	77	
Tip	Small residuum indicates a good reconstruction, but avoid overfitting.	
Details	The residuum with e.g. PCs 3 shows the residuum spectra using 1-3 PCs for	
	the reconstruction.	
Related Topic	Spectra Residuum, Primary PCs	

3.18.95 V-Set Spectra Residuum Min

Description	Shows the minimum residuum of the V-Set spectra using different number of PCs in the selected wavelength range.	
Use	To find the optimum number of primary PCs.	
Method	PCR / PLS / Cluster (CLU) / SIMCA	
Matrices ID	78	
Тір	Small residuum indicates a good reconstruction, but avoid overfitting.	
Details	The residuum with e.g. PCs 3 shows the residuum spectra using 1-3 PCs for	
	the reconstruction.	
Related Topic	Spectra Residuum, Primary PCs	

3.18.96 V-Set Std Orig Property

Description	Standard deviation of the original property values of the validation set spectra (standard deviation of the whole validation range, X-axis)
Use	To compare with the V-Set Std Pred Property
Method	PCR / PLS
Matrices ID	23
Тір	Gives information about the size of the original validation range.
Details	It is available in the calibration protocol (V-Set Orig.sdev).
Related Topic	V-Set Std Pred Property

3.18.97	V-Set Std Pred Property
---------	-------------------------

Description	Standard deviation of the predicted property values of the validation set spectra (standard deviation of the whole predicted validation range, Y-axis).
Use	To compare with the V-Set Std Orig Property
Method	PCR / PLS
Matrices ID	24
Тір	Gives information about the size of the predicted validation range.
Details	It is available in the calibration protocol (V-Set Pred.sdev).
Related Topic	V-Set Std Orig Property

3.18.98 V-Set X-PRESS

Description	Predicted Residual Sum Squares of the V-Set spectra.
Use	See the effect of the number of PCs for reconstructing the V-Set spectra.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	74
Тір	Help for selection of the number of primary PCs.
Details	The smallest number of PC, that is still showing changes, should be selected. Compare it with C-Set PRESS.
Related Topic	X-PRESS, C-Set X-PRESS

3.18.99 Wavenumber

Description	Contains the wavenumber index.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	82
Тір	
Details	Wavenumber is a column vector.
Related Topic	

Description	Contains the wavenumber index.
Use	For 1D-scatter plots.
Method	PCR / PLS / Cluster (CLU) / SIMCA / MLR
Matrices ID	83
Тір	
Details	Wavenumber is a row vector.
Related Topic	

3.18.100 X-PRESS

Description	Predicted Residual Sum Squared of all Spectra over all PCs.
Use	See the effect of the numbers of PCs for reconstructing the spectra.
Method	PCR / PLS / Cluster (CLU) / SIMCA
Matrices ID	12
Тір	Help for selection of the number of primary PCs.
Details	The smallest number of PC, that is still showing changes, should be selected.
Related Topic	Spectra Residuals, Spectra Residuum, Loadings

The X-PRESS function shows from which PC on an additional PC does not improve the spectra reconstruction.

The X-PRESS function sums up the intensity values that are left after reconstruction with each PC.

Interpretation: difference between pretreated spectrum and reconstructed spectrum will be summed up and squared. It is with the:

- 1. PC: X-PRESS 1= [pretreated spectrum-(mean spectrum + score 1 x PC 1)]2
- 2. PC: X-PRESS 2= [pretreated spectrum-(m.s. + score 1 x PC 1+ score 2 x PC 2)]2
- 3. PC: X-PRESS 3= [pretreated spectrum-(m.s. + score 1 x PC 1+ score 2 x PC 2 + score 3 x PC 3)]

The primary principal components should be set at the point where no significant changes in the X-PRESS value can be determined. The PC, which has no effect on the X-PRESS, normally has very small or only noisy information (see: Loadings).

Here: 1-3 PCs are important.

3.18.101 Y-Scores

Description	Each spectra is placed in the n-dimensional y-score space. The position of the spectra is given by the n-dimensional coordinate of the y-scores.
Use	For PLS2 (multi property calibration).
Method	PLS
Matrices ID	111
Tip	Compare with the Scores.
Details	Calculated for the C-Set (V-Set Y-Scores are 0).
Related Topic	Scores, Y-Loadings

Matrices of the final PLS calculation:

- □ Spectra are decomposed to Scores and Loadings.
- □ Properties are decomposed to Y-Scores and Y-Loadings.
- □ Y-Scores are predicted from the Scores and Properties are predicted from the Y-Scores.

Description	Y-Loadings build up the base for reconstructing the property together with the Y-Scores.
Use	For PLS2 (multi property calibration).
Method	PLS
Matrices ID	112
Тір	
Details	For one C-Set property (PLS1) the Y-Loadings are constant 1.

3.18.102 y-loadings

Related Topic Loadings, Y-Scores

Matrices of the final PLS calculation:

- Spectra are decomposed to Scores and Loadings.
- Properties are decomposed to Y-Scores and Y-Loadings.
- □ Y-Scores are predicted from the Scores and Properties are predicted from the Y-Scores.

3.19 NIRCal Configuration Options

3.19.1 Configuration Dialog

Menu: Edit / Options 層

Icon:

Different NIRCal functions can be configured here individually for each NIRCal Windows user account.

Configuration Dialog Tabs:

- General
- Journal
- □ Calibration Defaults □
- Tables
- 2D-Plots
- □ 3D-Plots
- System Modules
- Calibration Protocols

Directories

Cluster Prediction Protocol

3.19.2 General

Settings

Short Popup Menus	Displays short pop-up menus (right mouse button). It is recommended to deactivate so that the long, extended pop-up menu is available.
Sound Events	Activates acoustic messages/sounds about the actual status of NIRCal (e.g. loading spectra, calculating PLS,)
Backup Files before Safe	Create a backup copy before a file is saved. It is recommended to activate backup, which guarantees that a copy of each project is available. The backup file has the extension *.ni Rename the file extension to *.nir to be able to use it as a project.
plot wave axis in descending order	If it is activated, the plots show the wavenumber from 10'000 to 4'000 cm-1, if it is deactivated the plots show the wavenumber from 4'000 to10'000 cm-1 (like NIRCal 4).
flip Original vs Predicted in Property plot	Exchanges the axis in the plot "Predicted Property versus Original Property"
Database	If the batch information is not read, the spectra are loaded quicker from the database.
Terminology	Select NIRCal4 or NIRCal5 from the drop down list. NIRCal5 uses the Marten-Naes terminology (scores, loadings/PC), NIRCal4 uses the Malinowski terminology (loadings, factors)
NIRCal Default Settings	
Reset all NIRCal Settings	Resets all NIRCal settings to the default values or settings.

3.19.3 Journal

Defines the Logging Filters for the journal.

Directories	Cluster Pred	iction Protocol
System Modules	Calibr	ation Protocol
ieneral Journal Calib	ration Defaults Table	s 2D-Plot 3D-Plot
– Loggin <mark>g</mark> Filter for Journa	1	
	✓ Name changing	☑ <u>T</u> able
₩aming	Graphic	<mark>I</mark> mport
✓ Method	DEBUG	Export
☐ X Statistic	🔽 <u>D</u> ata Base	M <u>a</u> trix
Y Statistic	Pretreatment	Calibration
Selection / Set	Wizard	Measure
Value changing	Comment	Module
	Set all	Reset all
		4

The selected topics will be documented in the project journal. It is an important feature for the audit trail therefore the selection should be done carefully.

NOTE

The small buttons on the top right of a frame resets all values of the frame to the **default setting**.

NOTE

This feature was used in the file-mode. In database mode there is as **System Logger** in the Administrative Tools of the NIRWare Management Console.

NOTE

At the beginning of the calibration phase, **it is suggested to deactivate all entries** using the "Reset all" button, then activate Error and Warning. After the validation, activate all filters by clicking on the small box on the top right corner.

3.19.4 Calibration Defaults

Edits the default parameters for calibrations.

		Cluster Prediction Protocol
System M	odules	Calibration Protocol
General Journal	Calibration Def	aults Tables 2D-Plot 3D-Plo
- Settings		
oungo		
Method :		PLS 🔻
Spectra Select	ion Method :	Sequence
Percent Spectr	a in Calibration-Se	t: 66.66666 👻
		· · · · · · · · · · · · · · · · · · ·
<u>Calculation</u>	Calculate :	all Outliers
<u>Calculation</u>	Calculate a	all <u>O</u> utliers actra V-Set if empty
- <u>C</u> alculation	Calculate a	all <u>O</u> utliers ectra V-Set if empty s Validation reminder dialogs
- <u>C</u> alculation	Calculate a	all <u>Q</u> utliers ectra V-Set if empty s Validation reminder dialogs
Calculation	☐ Calculate a ✔ Create Spe ☐ show Cros	all <u>O</u> utliers actra V-Set if empty s Validation reminder dialogs
- <u>C</u> alculation	Calculate a	all <u>O</u> utliers ectra V-Set if empty s Validation reminder dialogs

Settings

Method	CLU or MLR, PCR, PLS. Default: PCR
Spectra Selection	Monte Carlo or Sequence. Default: Sequence
Method	
Percent Spectra in	between 0% and 100%. Default: 66.66% (2/3)
Calibration Set	

Calculation

Calculate all Outliers	Directs to calculate all outliers. Default: off The parameters for the Outlier detection can be defined in menu Project/Outlier detection.
Create Spectra V-Set if empty	In case the V-Set is empty, the system create it with the chosen Spectra Selection Method. Default: on.
show Cross Validation reminder dialogs.	The reminder dialog is visible before the cross validation, warning the user that the calculation with a high number of spectra takes too much time. Default: on See : <u>Cross Validation</u>

3.19.5 Tables

Sets/changes the parameters for the Table window.

Directories Clus	ster Prediction Protocol
System Modules	Calibration Protocol
General Journal Calibration Defaults	Tables 2D-Plot 3D-Plot
General	
Initial Zoom :	Show Gridlines
	Audit
Default Column Width: 85	Column <u>H</u> eading
Name : Arial	✓ <u>Size</u> : 14 ✓

NOTE

The small buttons on the top right of a frame resets all values of the frame to the default setting.

General

Initial Zoom	default 80%
default Column Width	default 3250
Show Gridlines Audit	Enable / Disable, default OFF Enable / Disable, default ON
Column Heading	Fixes the column heading, default OFF

Font

Name	default Arial
Size	default 10

3.19.6 2D-Plots

Sets/changes the parameters for a 2D graphic window.

Directories			Cluster Prediction Protocol				
System Modules			Calibration Protocol				
General	Journal	Calibr	ration Def	aults	Tables	2D-Plot	3D-Plot
Gener Sna Sna Sna Ant Defaul © Nor Font S	al ap X ap Y i-Aliasing t Linecolor ne © Se Sizes	Turbo P Linev s: ts ()	oints : 5 width : 0 Cycle ©	Prop	erty	Colors Background Frame Grid Highlight Normal Selection Text 01. Line Co	
Arial		_			•	03. Line Co	lor
Su Desc	Title : 0.6 btitle : 0.3 ription 0.1	i ▼ - 5 ▼	Label : Axis :	0.15	•	Scruence	een
	OK		Cancel		Apply		Help

NOTE

The small buttons on the top right of a frame resets the all values of the frame to default setting.

General

Snap X	Snaps the zooming so that there is always a value at the beginning and at the end of the x-axis, default OFF.
Snap Y	Snaps the zooming so that there is always a value at the beginning and at the end of the y-axis, default OFF.
Anti-Aliasing	The new graphic feature for plots, default: off.
Turbo Points	Defines the step width of point for displaying a spectrum in an 2D-Plot. Use this to speed up the display operation for your 2D-Plots, default 5. To switch a Graphic into Turbo Mode choose Options / Turbo Mode.
Linewidth	Defines the width of the lines use for displaying or printing spectra/vectors in the 2D-Line-Plot.
	Recommendation : Change the value <u>only</u> for printing spectra (e.g. to 5) with thicker lines. Afterwards reset the values to 0 (zero). Otherwise the display of graphs slows down considerably.
Default Linecolors None	Recommendation : Change the value <u>only</u> for printing spectra (e.g. to 5) with thicker lines. Afterwards reset the values to 0 (zero). Otherwise the display of graphs slows down considerably. Disables displaying 2D-Line-Plots using different colors.
Default Linecolors None Default Linecolors Sets	Recommendation: Change the value <u>only</u> for printing spectra (e.g. to 5) with thicker lines. Afterwards reset the values to 0 (zero). Otherwise the display of graphs slows down considerably. Disables displaying 2D-Line-Plots using different colors. Enables displaying 2D-plots using different colors for C- and V-Set selection.
Default Linecolors None Default Linecolors Sets Default Linecolors Cycle	Recommendation: Change the value <u>only</u> for printing spectra (e.g. to 5) with thicker lines. Afterwards reset the values to 0 (zero). Otherwise the display of graphs slows down considerably. Disables displaying 2D-Line-Plots using different colors. Enables displaying 2D-plots using different colors for C- and V-Set selection. Enables displaying 2D-plots using all possible different line colors cycling around the spectra.

Suggested default Line Colors:

- Select **Property for qualitative** calibrations or
- Select **Sets for quantitative** calibrations. (02 Line: C-Set, 03 Line: V-Set)

Line Colors: 02 Line Color = 1st color; 03 Line Color = 2nd color.

Font Sizes

Font Drop Down List	Defines the Font used in any 2D-Plot, default Arial
Title	Defines the size of the font used for titles, default 0,6.
Subtitle	Defines the size of the font used for subtitles, default 0,3.
Description	Defines the size of the font used for descriptions, default 0,15.
Label	Defines the size of the font used for labels, default 0,15.
Axis	Defines the size of the font used for axis description, default 0,3.
Colors	
Screen	Defines the screen color for the selected entry in the list above. The selected color is displayed in the box on the left of the button.
Print	Defines the printing color for the selected entry in the list above. The selected color is displayed in the box on the left of the button.

3.19.7 3D-Plots

Sets/changes the parameters for 3D graphical windows.

Directories	Clus	ter Prediction Protocol	F.
System Modules		Calibration Protocol	
General Journal Calib	pration Defaults	Tables 2D-Plot	3D-Plo
Display Precision Data Point Radius : Data Point Slices : Data Point Stacks : Data Point Display	2 × 11 × 7 ×	Colors Background Highlight Max. Concer	ntratic
 Semisolid (0-1): Grid Pins 	0.5 🔹		en

Note: the small buttons on the top right of a frame resets the all values of the frame to default setting.

Data Point Radius Data Point Slices	Defines the radius in generalized units for displaying data points in the 3D- Plot, default 2. Defines the number of slices in generalized units for displaying data points in the 3D-Plot, default 11
Data Point Stacks	Defines the number of stacks in generalized units for displaying data points in the 3D-Plot, default 7
Data Point Display	
Semisolid (0-1)	Displays the "spheres" semisolid (transparent), default: off. It is suggested to switch to on with 0.5.
Grid	Displays the "spheres" in a grid, default: off.
Pins	Displays a pin for each spectra, default: on.
Colors	
Screen	Defines the screen color for the selected entry in the list above. The selected color is displayed in the box on the left of the button.

Displays the "spheres" as a grid.

Boxes can be toggled by tipping B on the keyboard

3D with boxes

3D without boxes

3.19.8 System Modules

Sets the path for the system modules.

General	Journal	Calibration	Defaults	Tables	2D-Plot	3D-Plot
Directories		Cluster Prediction Protocol			bl	
S	System Moo	dules		Calibrati	on Protoco	bl
Insert	System Mo	odules				1
Modul	Module CALIBRATE				•	
Path	CilPen	aram Files\ Pi		colutions \ 1		
	C. VPTO	yiani rijes (Di	John Wirks	olutions \		
	Abo	out				

NOTE

The path should be changed only for your own created or modified modules: it is not recommended to use it.

3.19.9 Calibration Protocols

The content of the full calibration protocol can not be defined, this field has no function anymore.

3.19.10 Directories

The default paths for various files can be set individually.

System Modules Calibration F General Journal Calibration Defaults Tables 20 Directories Cluster Prediction F	Protocol)-Plot 3D-Plo
Default Path for Files	
Project C:\Buchi	
Spectra C:\Buchi\DX-Import	
Calibration	
Modules	
	,

NOTE

It is NOT suggested to change the path for Modules and Data Exchange Filters!

3.19.11 Cluster Prediction Protocol

Sets/changes the filter for the Prediction Protocol of Cluster and SIMCA calibrations.

System Modules	Calibration Protocol
General Journal Calibration	Defaults Tables 2D-Plot 3D-Plo
Directories	Cluster Prediction Protocol
Filter <u>S</u> ettings	
✓ not in a cluster (!)	🔽 not identified Clu OK (%)
✓ false identified (?)	✓ not identified Clu BAD (&)
🔽 įdentified (*)	✓ not identified known (-)
	🔽 not identified <u>u</u> nknown (=)
T auto select protocoled pr	oject spectra

Filter Settings

not in a cluster (!)	residual is within limits, but the distance is higher than allowed (spectrum is not in a cluster), default: on.
false identified (?)	residual is within limits, distance is smaller than allowed (spectrum is in a cluster), the predicted and original property name are different: this spectrum is identified as false, default: on.
identified (*)	residual is within limits, distance is smaller than allowed, the predicted and original property names are the same: this spectrum is identified correctly, default: off.
not identified CLU OK (%)	residual is not within limits, distance is smaller than allowed, the predicted and original property names do not match: this known spectrum is not identified, default: on.
not identified CLU BAD (&)	residual is not within limits, distance is smaller than allowed, the predicted and original property names are not the same: this spectrum is not identified, but it is in a known cluster, default: on.
not identified	residual is not within limits, the distance is not fulfilled, but the property is
known (-)	known in the calibration, default: on.
not identified unknown (=)	residual and distance is not fulfilled, the property is not available in the calibration, default: on.

With the shown settings, only correct identified spectra are not listed in the prediction protocol. By deactivating further categories, the list of spectra in the prediction protocol are reduced.

Case	Group	Symbol	Residual	Distance	Name/Property
1	not in a cluster	!	OK	not OK	not OK
2	false identified	?	OK	OK	not OK
3	identified	*	OK	OK	OK
4	not identified CLU OK	%	not OK	OK	OK
5	not identified CLU BAD	&	not OK	OK	not OK
6	not identified known	-	not OK	not OK	OK
7	not identified unknown	=	not OK	not OK	not OK

Especially cases **1 and 5 are critical**. By case 5 the residual relationship (actual against allowed) should be controlled. **Case 2 is inacceptable**.

Correct identifications -case 3- and not identified unknown -case 7- are less important.

Selection

auto select protocoled project spectra are automatically selected, can help to identify outliers in the project (with "Predict Project" and "Multi Predict Project". It is suggested to switch on by "predict projects" and "multi predict projects"

3.20 Menu commands

3.20.1 File menu

New Project

Creates a new NIRCal Project.

🖬 NIR-Explorer: project2			23
🔁 Project	Name	Value	
Instruments 	Globally Unique ID	{132F6D98-C282-4D2C-AC1E-01F2BBA8D68A}	
Properties	🗇 Creator	Administrator	
	🗇 Creator Login	Administrator	
H. Matrices	🗇 Created	05.08.2010 15:32:57	
	🛱 Creator Software	NIRCal	
	🛱 Creator Software Version	5.4	
	🛱 Creator Software Build	2000	
	🛱 Modified by	Administrator	
	🛱 Modifier Login	Administrator	
	🛱 Modified	05.08.2010 15:32:57	
	🛱 Current Software Timestamp	10.03.2009 08:53:53	
	🛱 Current Software Name	NIRCal	
	Current Software Version	5.4	
	🛱 Current Software Build	2000	
	🛱 Current Software Path	C:\Program Files\Buchi\NIRSolutions\1.4\NIRCal\nircal.exe	
	Di Project Path		
	🛱 Last imported file		
	< m		Þ

Close Project

Closes the project.

The following message appears:

It is recommended to press "Yes".

Database

Icon:

Open Project

Menu: File / Database / Open Project...

6

Opens a NIRCal Project from the NIRWare Database.

Project	Last Accessed ¥	Project Comment	Calibration	Version	0-Value	GUID	Comment Proper
	(*		*	•	•
Sugar-QNT	01/11/2006 13:29		Sugar-Quanti	0	0.508306460806123	4923922e-2d11-43ec-8bcb-f40e5	Properti
Sugar-QNT	01/11/2006 13:29		Sugar-Quanti	1	0.036574432292781	4923922a-2d1f-43ec-8bcb-140e5	Properti
Sugar-QNT	01/11/2006 13:29		Sugar-Quant.	2	0.555520646298097	4923922a-2d1f-43ec-8bcb-f40e5	Properti
Sugars-ID	01/11/2006 11:36		Sugars, mf-db1, 4.2-9.7, F.3	0	0.968868496644456	5623e363-831b-4eda-9cc2-10ae	Properti
Sugars-ID	01/11/2006 11:36		Sugar-ID, mf-db1, 4.2-9.7, F:3	1	0.968868496644456	5623e363-831b-4eda-9cc2-10ae	Properti
Sugars-ID	01/11/2006 11:36		copy of Sugar-ID, mf-db1, 4.2-	2	0	5623e363-831b-4eda-9cc2-10ae	Properti
Test-1-QL	01/10/2006 17:54		unnamed	0	0	85ct421a-789d-4ad4-a75a-fa125	Properti
Test-1-OL	01/10/2006 17:54		O-value, secondary/primary P	0	0	adad4a86-29d5-4940-a2c6-782d	Properti
Test-1-QL	01/10/2006 17:54		Fructose, Lactose, Sucrose, F	0	0	c4130a58-7078-4b8d-8cd9-a07c	Properti
SolvenHD-8P-Tube	01/05/2006 16:05		Solvents	0	0.920048307766119	f8f61bb8-27c4-424a-801f-c6b28	Properti
Solvent-ID-BP-Tube	01/05/2006 16:05		Solvents-ID	1	0.920001470351398	f8f61bb8-27c4-424a-801t-c6b28	Properti
SolvenHD-8P-Tube	01/05/2006 16:05		copy of Solvents	3	0.920048307766119	f8f61bb8-27c4-424a-801f-c6b28	Properti

Save Project

Menu: File \ Database \ Save Project As...

lcon:

Saves the active project to the NIRWare Database.

Save Project	to Database	×
Projectname	Prolin in Honey	Save As
	Projectname is unique	
	save Spectra (incl. properties and concentrations)	Cancel
	save Calibrations (the spectra are linked to the calibrations)	

This function is needed to save a NIRCal-Project (opened from file *.nir) to the NIRWare Database.

Saving the spectra with the setting : **[x] save Spectra (incl. properties and concentrations)** will force a duplicate spectra check. (Note: This works because all NIRCal written files include the spectrum GUID's (also in JCAMPDX) and this GUID is also used in the NIRWare database.)

After saving the project to the database, the dialog to assign the Project to an application automatically appears.

Duplicate spectrum GUID

Nyyare	
2	618 duplicate of total 618 spectra have been detected.
0	Press OK to write all non-duplicates and ignore the duplicate entries
	Press Cancel if nothing shall be saved to the database
	OK Abbreche

Duplicate spectra have been detected. Press OK to write all non-duplicates and ignore the duplicate entries. Press Cancel if nothing shall be saved to the database.

Save Project As...

Saves the active project to the NIRWare Database with a new Name

Save Project to Database	×
Projectname	Save As
	Cancel

This function is needed:

- To save a project if the spectra are loaded from the database;
- To create a copy of a NIRCal-Project (opened from database) with another name. Not recommended to use.

Note: the calibrations are not copied; they are linked to the project. To copy the calibration use Lifecycle/Copy.

NOTE

Use a unique project name with Latin letters (a-z) only.

Import latest Application spectra

Menu: File / Database / Import latest Application spectra...

lcon:	€¥
-------	----

Automatically imports all spectra from the database to NIRCal which are assigned to the Application. See <u>Manage Application...</u>

Manage Application...

6

Menu: File / Database / Manage Application...

Icon:

An existing application in the database can be assigned to a project. New measured spectra (NIRWare Operator) from an application assigned to a NIRCal project can automatically be imported to this project. This is useful for recalibration.

See Import Spectra to assigned NIRCal Project

xisting Applications can be assigned to the pplication measured spectra into the Proj	nis Project. That's for importing the ect. The assignment can be changed	OK
ynamically; it's a helpful tool to import the latest Application spectra.		
vailable Applications	Applications assigned to this	Project
/U: Test ext. Heterence 1 /0: Test ext. Reference 2 /0: Test Solids TM int. Ref.	< < <<<	

This Dialog also appears when a NIRCal Project is saved to DB.

Search and Import Spectra...

Opens the dialog to search and import spectra from the NIRWare Database to NIRCal. The list displays per default only spectra from last 30 days [Time = e.g. from 05.01.2005 to 4.02.2005] and with an assigned reference value [Reference Values >0].

Ļ	Sample 🔻	Application	Time	Instrument	mentCell	ment Cell	e Values	Spectrum	istic	Scans	Resolutio	nt Serial	3 IL
		1	12/13/2005-01/12/200					-	Samp 💌				
ſ	MetOH-2	Solvent-ID-REF	01/05/2006 14:24	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	,
	MetOH-2	Solvent-ID-REF	01/05/2006 14:24	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	Î
	MetOH-2	Solvent-ID-REF	01/05/2006 14:24	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	í.
l	MetOH-2	Solvent-ID-REF	01/05/2006 14:25	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	ú
	MetOH-2	Solvent-ID-REF	01/05/2006 14:25	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	í.
1	MetOH-2	Solvent-ID-REF	01/05/2006 14:25	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	i
	MetOH-1	Solvent-ID-REF	01/05/2006 14:21	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	į.
1	MetOH-1	Solvent-ID-REF	01/05/2006 14:21	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	í
1	MetOH-1	Solvent-ID-REF	01/05/2006 14:22	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	í
1	MetOH-1	Solvent-ID-REF	01/05/2006 14:22	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	į
	MetOH-1	Solvent-ID-REF	01/05/2006 14:23	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	į
1	MetOH-1	Solvent-ID-REF	01/05/2006 14:23	NIRFlex N500	Solids	XL	3	Reflectan	Sample	8	4	0400000	í
1	Lac 90 FSuc 10 4		12/20/2005 11:35	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	j.
1	Lac 90 FSuc 10 4		12/20/2005 11:36	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	í
1	Lac 90 FSuc 10 4		12/20/2005 11:39	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	í
Ì	Lac 90 FSuc 10 3		12/20/2005 10:48	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	í
ļ	Lac 90 FSuc 10 3		12/20/2005 10:53	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	í
1	Lac 90 FSuc 10 3		12/20/2005 10:56	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	í
1	Lac 90 FSuc 10 2		12/20/2005 10:20	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	í
1	Lac 90 FSuc 10 2		12/20/2005 10:36	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	í
1	Lac 90 FSuc 10 2		12/20/2005 10:46	NIRFlex N500	Solids, Vi		2	Reflectan	Sample	16	4	4000000	ĩ
j	ac 90 FSuc 10		12/20/2005 10:15	NIRFlex N500	Solids Vi		2	Reflectan	Sample	16	4	400000	

To remove the default filter and display all spectra within the database :

□ click on the grey cell below [Time] and following dialog appears

Filter						×
Specific	Date and	Time				
¢	on:	2-05-2005	•			
Period						
C	from:	23-05-2005	-	to:	25-05-2005	•
C	0		÷			
I Igno	re Time					<u> </u>
1				12		

- change the filter settings and click ok.
 Clicking Cancel disables the time filter completely. Same effect when clicking the grey cell below [Time] with the right mouse.
- □ click in the cell below [Reference Values] , delete >0 and press ENTER

Filtering options:

- □ Time Filter, see above
- Drop Down list for [Instrument], [Measurement Cell], [Measurement Cell Option], [Spectrum Type], [Characteristic]
- Text for [Sample], [Application]; e.g. edit "sug" in the cell below [Application] will display all spectra measured with applications, e.g. "sugar" or "sugars" etc.
- Digit for [all others]; e.g. edit "<10" in the cell below [Scans] will display all spectra scanned with less then 10 scans (<,>,<>,=,>=,<=)</p>

Database Options

Delete Project

Not used projects can be deleted. Delete the existing calibrations inside the project first with "Lifecycle/Delete", otherwise the calibrations are still existing in the database.

Import

Import Project

Imports NIRCal Project Files (*.nir)

Open				<u>?</u> ×
Look in:	🞯 Desktop	•	⇐ 🛍 💣 📰•	
My Recent Documents Desktop	My Documents My Computer My Network Places			
My Documents				
My Computer				
My Network Places	File name:		•	Open

NOTE

BCAP Series can be loaded adjusting "Files of type" to "all files" (*.*) and selecting the spectra file "...Sxx"

Import Spectra

Imports Spectra from a File.

Open						X)
TREE I	IDRC-2010 🕨 ref			- 4	• Search ref	Q	
Organize 🔻 New fo	lder				E	• •	
★ Favorites ■ Desktop ▶ Downloads ▶ Downloads ■ December ■ Documents ▶ Music ■ Pictures ■ Videos Image: Computer ▲ Local Disk (C:) □ Local Disk (D:)	IDRC2010XcalRefl ect CalibWiz BOSR IDRC2010XstdRefl ect.JDX	IDRC2010XcalRefl ect CalibWiz IDRC2010XtestRef lect.JDX	IDRC2010XcalRefl ect.JDX IDRC2010XvalRefl ect.JDX	IDRC2010XcalRefl ect	IDRC2010XcalRefl ect-Cholesterol	IDRC2010XcaiRefl ect-Glucose	
File	name:			-	NIRCal Files (*.ns	f;*.bmp;*.dat;*.csv;*.s	oc;*.dx;*.jdx;*.jcm;*.nir;)
					NIRCal Files (*.ns NIRCAL Spectra Bitmap Files (*.da Grams Spectra (JCAMP-DX (*.dt NIRCAL Project F NIRCAL Project F	f;*.bmp;*.dat;*.csv;*.sp File (*.nsf) bmp) (t;*.csv) *.spc) x;*.jdx;*.jcm) file (*.nir) File ()	oc;*.dx;*.jdx;*.jcm;*.nir;)

Several data formats can be imported.

Export

Export Project

Save a NIRCal Project as *nir File. The question: "Store the project into the database before?" appears. It is better to export without storing (the calibration will be closed and will not be editable).

Speichern unter					×
🖉 🚽 « Programme 🕨 Buchi 🕨 NIRSc	lutions 🕨	Quickguide 🕨 Data		Data durchsuch	ien 👂
Organisieren 👻 Neuer Ordner					
Buchi Buchi Database Manager NIRSolutions Embedded Embedded Filters Nodules Plugins Quickguide Data Common Files Dell DellTPad	A H	Quantitative.nir	Quantitative-Outl iers.nir	Sugar.nir	
Dateiname: Quantitative-Outliers.nir					•
Dateityp: NIRCalProject (*.nir)					•
Ordner ausblenden				Speichern	Abbrechen

Export Spectra

Save As					<u>? ×</u>
Save in:	🞯 Desktop		•	* 🛍 🔿	
My Recent Documents	My Document My Computer My Network P	s laces			
Desktop					
My Documents					
My Computer					
My Network	File name:	Spectra		•	Save
Places	Save as type:	NIRCAL Spectra File ('	*.nsf)	•	Cancel

Print

Prints the current view.

Print Preview

Print Preview of the current view.

Print Setup

Opens dialog to setup the default printer.

Name:	Microsoft XPS Document Writer	Eigenschaften
Status:	Bereit	
Typ:	Microsoft XPS Document Writer	
Standort:	XPSPort:	
Kommenta	ar:	
Papier		Ausrichtung
Größe:	A4 💌	C Hochforma
Quelle:	Automatisch auswählen	

Exit

Closes NIRCal incl. all opened NIRCal-Projects.

3.20.2 Edit menu

Undo Undos text editing

Cut

Ctrl+X

Сору

6 Copies the active object to the clipboard

View Type Clipboard Object 2D-Plots Metafile **3D-Plots Bitmap** Tables ASCII-Text cells separated by TAB

Paste

Pastes text from the clipboard into the actual document.

Options

Opens the Dialog Box to change NIRCal Configuration Settings.

3.20.3 View menu

Overview

Recalculates the calibration and opens several graphics for an overview of the calibration. Depending on the selected calibration method the most useful graphics are opened.

Example: Overview of a Cluster calibration

For detailed information see the description of the corresponding matrices:

X-PRESS, Scores, Property Box Radii, Property Residuum, Spectra Residuals too big, Cluster per Property, Pretreated Spectra

Example: Overview of a Quantitative calibration

For detailed information see the description of the corresponding matrices: <u>Pretreated Spectra</u>, <u>Regression Coefficients / Property Spectra (CLU)</u>, <u>Consistency</u>, <u>V-Set PRESS</u>, <u>C-Set Regression Coefficient</u>

Spectra Selection

S

Opens a few windows for spectra selection:

You can select spectra in the plot by double clicking on the displayed spectra or changing the selection mode to "Mouse Window Select" using the popup menu of the window.

Example of a Spectra Selection Plot

Wavelength Selection

Opens a few windows for wavelength selection:

You can select wavelengths in the plots by changing the selection mode to x axis selection and then marking a region in the plot keeping the left mouse button pressed.

Example of a Wavelength Selection Plot

Property Selection

Opens a few windows for property selection:

You can select property in the plot by double clicking on the displayed property or changing the selection mode to "Mouse Window Select" using the popup menu of the window.

Example of a Property Selection Plot

Primary PCs (Factor) Selection

Example of a Primary PCs Selection Plot

Secondary PCs (Factor) Selection

HE2

Example of a Secondary PCs Selection Plot

Outlier Detection

Example of an Outlier Selection Plot

Time Dependency

Example of a Time Dependency Plot

Creator Dependency

Instrument Dependency

Property Dependency

Example of a Property Dependency Plot

Custom

For customizing workspaces with the plugin System Module "WIZARD PLOTS". If no plugin is installed the menu item is gray.

Toolbars

Toggles the display of each toolbar. Same can be done using the right mouse in the toolbar region.

-	Calibration
~	Database
-	File & Edit
-	Lifecycle
~	Modules
~	Options
~	Pretreatments
-	Pretreatments Advanced
~	Pretreatments Gap2
~	Pretreatments MiniBar
-	Project
-	Search Import Export
-	Window
~	Wizard
~	Wizard Workspace
~	Zoom & Select
	Show all Toolbars
	Hide all Toolbars
	Toolbars save positions
	Toolbars load positions
-	Status Bar

Show all Toolbars

Displays all toolbars.

Hide all Toolbars

Hides all toolbars.

Status Bar

Displays/hides the status bar at the bottom of the NIRCal window.

Depending on the active window or the called function the status bar contains different information.

Toolbars save positions

Saves the actual set of displayed toolbars and their position.

Toolbars load positions

Displays and repositions all toolbars saved as user toolbar positions.

See <u>Toolbars save positions</u>

3.20.4 Workspace

Workspace

It is possible to create ones own workspace. Open a set of graphics and/or protocols and arrange them as wished. Then Save the workspace.

It is also possible to save and load workspaces (1-3) with Icons in the Toolbar "Wizard Window"

Save Workspace

New

Creates a new workspace based on the actual opened windows.

reate New Workspace		
Name:		OK
My new view 1		Cancel
	Y	

Delete Workspace

List Workspace

To delete a workspace select it from the list

List Workspace

Select a workspace from the list:

3.20.5 Project

Edit Selections

Opens the Dialog Box to edit selections.

Name	ОК
Spectra Selection	Cancel
Spectra Selection Wavelength Selection Property Selection PC Selection	
C Sequence	
C Blockwise	
Custom [Spectra]	
nothing selected.	
nothing selected.	
nothing selected. Parameter Range from 1 to 7	78 Clear
Parameter Parameter Range from 1 to 7 Block select 2 leave 7	78 Clear

Load Selection from

Spectra C-Set

Load selection from the Spectra C-Set.

Spectra V-Set

See Load selection from the Spectra V-Set.

Wavelengths C-Set

Load selection from the Wavelength C-Set.

Properties C-Set

PCs C-Set

Load selection from the PCs C-Set.

Change X-Unit to

Wavenumbers

Wavelength

nm nm

Spectra

Add empty spectra

Only possible in NIRCal file-mode.

Delete selected spectra

Deletes the red selected spectra from the project. To remove spectra from the calibration, they can be deleted in the calibration data set selection C-Set and V-Set.

Property

Add property

Only possible in NIRCal file-mode.

Delete selected property

Only possible in NIRCal file-mode.

Journal

Show

Displays the project journal.

Logging Filter

Opens Dialog to change the filter.

Custom defined size

It is possible to use NIRCal as a tool for multivariate analysis of any type of data. For this purpose the dimensions of the data matrices have to be defined and prepared for input.

Open a new project (Menu File / New) and select "Custom defined Size" in the Menu Project:

懂 NIRCal - Project5		
<u>File E</u> dit <u>V</u> iew Workspace	Project Calibration Wizard	<u>T</u> ables <u>G</u> raphics <u>M</u> odules
<u>W</u> indow <u>H</u> elp	Edit Selections	Shift+F2
	Load Selection from	X
	Change X-Unit to	
🗊 NIR	Spectra	
Proje	Property	•
	(r Journal	Inique ID
	Custom defined size	
) 1	Calibrations Matrices	ඕ Creator Login
		Creator Software
		🛱 Creator Software Ver
		🛱 Creator Software Buil 🞽
Ready		(BUCHI)

Define the size of your data in the appearing window:

Customize Project		
Data Size	le .	ОК
Number of Spectra : Number of Properties :	1	Cancel
Number of Wavelengths :	8	

NOTE

Since NIRCal normally is used for the analysis of spectra, the terminology might be unusual for the statistician. The following terms are equivalent:

Number of spectra = Number of samples

Number of Properties = Number of dependent variables (y-values)

Number of Wavelengths = Number of independent variables (x-values)

Once the dimensions of the data matrices have been entered, corresponding tables are opened and are available for edition:

All Properties	8
All Spectra	
Spectra	< <undef>></undef>
Custom Spectra 1	0.0000
Custom Spectra 2	0.0000
Custom Spectra 3	0.0000
Custom Spectra 4	0.0000
Custom Spectra 5	0.0000

Original Spectra				
All Wavelengths				
All Spectra				
Spectra	0	1	2	3
Gustom Spectra 1	0.000000	0.000000	0.000000	0.00000
Gustom Spectra 2	0.000000	0.000000	0.000000	0.00000
Gustom Spectra 3	0.000000	0.000000	0.000000	0.00000
Gustom Spectra 4	0.000000	0.000000	0.000000	0.00000
Custom Spectra 5	0.000000	0.000000	0.000000	0.00000

The easiest way to enter data is via copy and paste (e.g. from EXCEL files).

Custom defined size: NIRCal works in file-mode which allows to resize the spectra and property afterwards as well. The given waves or variables are constant after Custom defined size.

NOTE

X-variables have to be entered in transposed format if the number of variables is smaller than the number of samples.

Under Modules / Settings Advanced.../ Custom Data, the transpose (tilt) of the property and spectra grid can be adjusted.

3.20.6 Calibration

New

Creates a new calibration.

Calibration Wizard

Starts the Calibration Wizard.

For further details see: Calibration Wizard

Default Parameter

Opens the dialog to edit the calibration default settings.

For further details see: Calibration Defaults

Method

Principal Component Regression

PCR Changes Calibration Method to Principal Components Regression

Partial Least Squares Regression

PLS Changes Calibration Method to Partial Least Squares

Multiple Linear Regression

Changes Calibration Method to Multiple Linear Regression

Cluster

CLU Changes Calibration Method to Cluster

SIMCA

EX Changes Calibration Method to SIMCA

Validation Method

Validation Set

Changes Validation Method to Validation Set

Cross Validation

Changes Validation Method to Cross Validation

Parameter

Calculation
Opens Dialog to Edit Calculation Parameters

Blow Up Limits

Dens Dialog to Edit Blow Up Parameter

Lifecycle

Edit

0 Switches the lifecycle state of the calibration to Editing.

The Calibration-Icon changes 🔡 so that the calibration settings can be changed.

See Calibration Handling for details regarding the use of the lifecycle model on calibrations. More detailed general information regarding the NIRWare Lifecycle can be found in the NIRWare Software Manual.

Save

Switches the lifecycle state of the calibration to Saved.

The Calibration-Icon changes to **and the Calibration Settings are locked**.

See Calibration Handling for details regarding the use of the lifecycle model on calibrations.

Copy

Creates a copy of the calibration in the NIRWare Database. This enables the possibility to edit the copy of an **approved** Calibration.

See Calibration Handling for details regarding the use of the lifecycle model on calibrations.

Next

3 Sets the calibration into the next lifecycle state. e.g. from **created to approved**.

See Calibration Handling for details regarding the use of the lifecycle model on calibrations. More detailed general information regarding the NIRWare Lifecycle can be found in the NIRWare Software Manual.

Delete

x1

Deletes a calibration from the lifecycle.

3.20.7 Wizard

Calibration Wizard

Btarts the Calibration Wizard.

For further details see: Calibration Wizard

Toolbox

Starts the Toolbox.

3.20.8 Modules

Edit Module

Opens the macro-editor for entering BASIC macro code.

Macro1 (macro) - NIRCal Module [design] Quantitative		3
🖹 🚅 🖬 🎒 🎒 🕨 II 🔳 🖑 60° 🔶 93 💭 💷 🔛		
Object: (General) 🗾 Proc: Main		-
Macro1 × 1 '#Language "WWB-COM" 2 3 Option Explicit 4 5 Sub Main 6 7 F End Sub		*
	•	
		6

Click F1 for the Help File.

Run Module

Opens the dialog to select NIRCal Module (*.bas) to be executed.

Organize Menu

Add

Opens a dialog to select a module which will be added to the modules list. The modules are saved in the following folder: C:\Program Files\Buchi\NIRSolutions\Modules

🖉 🖉 📲 « Program P	lies 🖡 Buchi 🖡 NIRSolutions 🖡 1.4 🖡 NIRCal	 Modules 	• • • • •	Search Moaules	
Organize 🔻 🛛 New folder				II • 🗖	0
🛠 Favorites	Name	Date modified	Туре	Size	
Marktop	Advanced Settings.BAS	29.07.2010 11:12	BAS File	5 KB	
Downloads	AverageSpectrum.bas	29.07.2010 11:12	BAS File	19 KB	
🔛 Recent Places	Calibration Wizard.BAS	29.07.2010 11:12	BAS File	86 KB	
	CheckMacroModuleSign.BAS	29.07.2010 11:12	BAS File	4 KB	
🗃 Libraries	Export JCAMP-DX.bas	29.07.2010 11:12	BAS File	4 KB	
Documents	Export Single Jcamp.bas	29.07.2010 11:12	BAS File	2 KB	
J Music	FactorSelectionWizard.BAS	29.07.2010 11:12	BAS File	1 KB	
E Pictures	FactorSelectorCluster.BAS	29.07.2010 11:12	BAS File	5 KB	
Videos	GetSelectedSpectraGuids.BAS	29.07.2010 11:12	BAS File	2 KB	
	GetSpectrumInfoTable.BAS	29.07.2010 11:12	BAS File	4 KB	
🖳 Computer	Group Selector.bas	29.07.2010 11:12	BAS File	18 KB	
🚢 Local Disk (C:)	JCAMP-DX Settings.BAS	29.07.2010 11:12	BAS File	4 KB	
🎉 NIRFlex N500 Tem	langchange.bas	29.07.2010 11:12	BAS File	1 KB	
PerfLogs	LangConsts.BAS	29.07.2010 11:12	BAS File	6 KB	
🍌 Program Files	LoadSpectraByGUID.BAS	29.07.2010 11:12	BAS File	1 KB	
ル ProgramData	ProjectUnlocker.bas	29.07.2010 11:12	BAS File	3 KB	
퉬 temp	Property Type (quant or ident) auto dete	29.07.2010 11:12	BAS File	3 KB	
퉬 Users	SearchDuplicateSpectra.BAS	29.07.2010 11:12	BAS File	23 KB	
퉬 Windows	Select Project Property.BAS	29.07.2010 11:12	BAS File	1 KB	
💼 Local Disk (D:)	Select Spectrum Nearest Neighbor.bas	29.07.2010 11:12	BAS File	2 KB	
	Spectra Converter 5.bas	29.07.2010 11:12	BAS File	23 KB	
📭 Network	Spectra Group Wizard.BAS	29.07.2010 11:12	BAS File	3 KB	
	Spectra Name find and replace.BAS	29.07.2010 11:12	BAS File	4 KB	
	Spectrum Search GUID.bas	29.07.2010 11:12	BAS File	2 KB	
	Spectrum Search Name.bas	29.07.2010 11:12	BAS File	1 KB	
	Wavelengths to chemical bonding.BAS	29.07.2010 11:12	BAS File	22 KB	
File nar	me: *.bas:*.bax		•	Nircal Module (*.bas;*.bax)	-

Edit

Select a module from the module list to be opened with the Module Editor.

Remove

Select a module that shall be removed from the module list.

Modules List

Default list of modules. The list can be adapted by Organize Menu.

Chemical Bonding

Translates the wavelengths to chemical bondings. See mouse cursor position in the status bar.

Settings Advanced

Opens the dialog to change advanced NIRCal settings.

Calibrate	Custom Data	ПК
 Warning different Y-units in V-Sel Warning different Y-units in V-Sel 	tilt Spectra Grid	Cancel
Cluster Calibration Protocol C-Set Spectra Total Statistics V-Set Spectra Total Statistics	Overview Plots V * show spectra plots	*) checked by defaul
Property Radii Total Statistics Property Besidual Total Statistics	Progress Bar ✓ * visible	

If there are spectra with **different Y-units** (BCAP and NIRCal spectra in the same project), the warning should be activated (remove check).

The spectra plot can be switched off in the Overview plot (calculation is quicker for huge data set).

Setting JCAMP-DX Export

Spectra-	10	Special	
format	* Fixed Format 🔹	□	OK
scaling	* fix scale = 1'000'000 🔹] 🔲 anonymize data	Cancel
Propertie:	s e NCU round brackets () e NCU angle brackets < >		*) checked by defaul

Spectra Converter

Converts spectra to the format of the NIRFlex N-500, e.g. spectra of NIRFlex-400 or NIRLab N-200. See detailed information under <u>Convert and Import spectra from other instruments to a database</u>.

Spectra Duplicate Search

Spectra removal steps:

- 1. delete identicals: spectra pairs with a Mahalanobis distance of zero in secondary PCs space.
- 2. delete most different: from the spectra pair that has the highest distance, that spectrum with the higher leverage will be removed. Used for outlier removal.

3. keep x% of the spectra: an iterative similar search is used to find as much spectra to thin out the amount of spectra.

When you click Advanced, the following dialog opens:

Search type <u>d</u> uplicates	Searc	ch Distance Limit	0.01	Distance Se	arch	OK
C simil <u>a</u> r* C dissimilar* C different	Кеер	at least	Spectra		irch	Help
Duplicate Spectra						Select found
Max Mahalanobis	Distanc	e = 0.5645718	31			<u>S</u> mart
Min Mahalanobis	Distance	e = 0.0082302	U			All
MD = Mahalanobi PD = Property Difl	s Distan	ce of spectra v a	nd u (v-u)			<u>K</u> eep
	01011000		100 y (n y)			Selection
opectra pairs (x,y) # x	: y	MD	F	PD		<u>C</u> lear
All selection:						Invert
nothing selected.	(total 0)					Spectra
Smart selection:						Delete
nothing selected.	(total 0)					Graphics
	(total 0)				L	
Keep selection:	(cordi o)				Γ	Project
Keep selection: nothing selected.						
Keep selection: nothing selected. Fotal Spectra in p	roject: 6	18				

The following fields, areas and buttons are available:

Search type: defines the search logic.

Search: defines the search criteria and method.

Distance Search: The Mahalanobis Distance -MD- Limit depends on the data and the calibration settings. Each search trial shows the Min and Max Mahalanobis Distance to get an idea about the limit to choose.

Iterative Search: Often it is easier to define the number of spectra that should be found instead of an M-Distance Limit.

Select found (Smart, All, Keep): Selects the found spectra in NIRCal (red selection). Selection (Clear, Invert): Helpful tool to manipulate the red selection.

Clear: Clears the selection.

Invert: Inverts the selection.

Spectra (Delete, Graphics)

Delete: Deletes selected spectra from the project. Typically the smart selection can be deleted to shrink the amount of calibration spectra.

Graphics: Opens a pretreated spectra plot to visualize the selection.

Project (Update, Data Sets...)

Update: Updates the calibration calculation. Used when data sets are edited or spectra are deleted. Data Sets: Opens the Edit Data Sets dialog to change the calibration selections. Used to copy and paste textual selections from the search results.

Spectra Group

compares it with the corresponding spect values. Useful to check the properties and spect syntax. The number of characters of the s can be defined.	ra name proctra name

1	Val 1 2010-07-07 14-1	2-505	5				
2	Val 2 2010-07-07 14-1	6-395	5	0	0	1	
3	Val_3_2010-07-07_14-2	1-155	5	0	0	1	
4	Val 4 2010-07-07 14-3	3-015	5	0	0	1	
5	Val 5 2010-07-07 14-3	7-045	5	0	0	1	
6	Val 6 2010-07-07 14-4	1-185	5	0	0	1	1
7	Val 7 2010-07-07 14-4	5-495	5	0	0	1	
8	Val 8 2010-07-07 14-5	0-055	5	0	0	1	
9	Val 9 2010-07-07 14-5	4-245	5	0	0	1	
10	al 10 2010-07-07 14-5	9-085	5	0	0	1	
11	al 11 2010-07-07 15-0	3-055	5	0	0	1	-
12	al_12_2010-07-07_15-0	8-005	5	0	0	1	
13	al 13 2010-07-07 15-1	7-575	5	0	0	1	-
di Pr di Gr ipec	operties in all Groups are identica oups has the same size. tra : 75 Properties : 1 Groups	al : 15					

Spectra Info Table to clipboard

The spectra information can be copied into Excel.

Spectra Nearest Neighbor Select

The Matrix "Spectrum Nearest Neighbor Index": (NIRExplorer / Matrices / "Spectrum Nearest Neighbor Index") contains the spectrum index of the nearest spectrum to each spectrum in the project. The best is to show it as 1D-Scatter-Plot for selected spectra. This matrix is related to "Spectrum Nearest Neighbor" which contains the Mahalanobis Distance between nearest spectra pairs. As referred in the ASTM E1655-05 "16.4.8 Nearest Neighbor Distance". **Note**: "Spectrum Nearest Neighbor Index" and "Spectrum Nearest Neighbor" depends on the secondary PC-selection.

Note: In most cases, the project has multiple repetitive measurements. Then the picture shows a nearly upward diagonal with some spikes. The reason is that repetitive measurements are the most similar and successively stay together.

Note: pair-wise distances are not always symmetric. A can be nearest to B and B can be nearest to C (and to A).

Spectra Select by QL Property

All spectra belonging to the marked qualitative property will be selected.

NOTE

These modules are installed but not added to the Modules menu.

Average spectrum

Sequence	select	3	leave	0	Cancel
🖱 Spectra Name	from	1	len	255	Help
Property Values	all Prop	erties ider	ntical		Build Groups

Average Spectra can be calculated and saved to file (nsf). The project is not affected, it is only the data source.

To define which spectra will be averaged they can be defined as so called Groups:

- □ Sequence block wise sequences
- Spectra Name same spectra name
- □ **Property Values** same property values

The stored Average Spectra contains the following additional information:

Comment i.e. Average of 12 Spectra

□ Description contains all the spectra GUID's of the averaged Spectra □ Instrument Serial -1 as marking of a Average Spectrum
Check Module Signature

Choose the folder: C:\Program Files\Buchi\NIRSolutions\Modules

Check BAS and CLS Modules	
BAS files with a bad signature. Date and time the file was last changed. Directory : C:\Program Files\Buchi\NIRSolutions\1.4\NIRCal\Modules	
Total signed ok : 26 Total wrong or not signed : 0	
CLS files with a bad signature. Date and time the file was last changed. Directory : C:\Program Files\Buchi\NIRSolutions\1.4\NIRCal\Modules	
Total signed ok : 5 Total wrong or not signed : 0	

Can be used to check the software for original content.

Checks the Digital Signature in NIRCal Macro Modules. A detailed log lists all Modules that are not correctly signed or modified. The modification date/time is also listed.

Spectra Name find and replace

NOTE

This module is installed but not added to the Modules menu.

To replace the name is only possible in **File mode**, not allowed in projects stored already in the database.

ind		
eplace		
Spectra	Calibration	Property-
∏ Name	🗖 Name	🗖 Name
Comment	Comment	
Description		

3.20.9 Windows

Cascade

All windows will be opened in a cascade.

Tile Horizontally

All windows will be opened tiled horizontally.

Tile Vertically

All windows will be opened tiled vertically.

Close All

Closes all opened windows except the NIR-Explorer.

Fit All Windows

Fits the content of every window to default. E.g. the zooming factor.

Related to View Fit which fits only the content of the active window.

Toggle Plot Size

Toggles the plot size of every window.

Related to Large Plots which changes the plot size of only the active window.

Arrange Icons

Windows List

List of all opened window. The active window is marked with a checkmark.

3.20.10 Help

Index

Opens this Online Help.

Software Registration

The registration file is created here. Please fill in all necessary input.

Software Registration	
Buchi software is license protec you fill out this registration form computer. The HostID is a uniq ensure the license agreement. registration to your buchi sales	ted. The software will only be available on the computer where , because the license will be bound to the HostD of this ue machine identifier that will be used by the software to Please fill out the registration form below and send the representative. Thank you for using buchi software!
Software:	NIRCal 5.5
AN:	AN and SN numbers are
SN:	mandatory if the sticker is in the DVD-Box!
HostID of this computer.	D4BED94988EA
Hostname of this computer.	CHNB0206
Company:	
Name and sumame:	
Title:	
eMail:	
Phone:	
Address:	
Postal code:	
City:	
Country:	
Remark:	
	OK Cancel

Import License

Import the licence file: "BuchiLic-550021-..." for NIRCal and "BuchiLic-550041-..." for NIRCal toolbox.

About NIRCal BASIC

About NIRCal

		NIRCal 5.5.	
(BUCHL)	NIRCal MIRCal	Visual Tool for Chemometrics and Multivarian This software is licensed to BUCHI License Number is License issued by	e Data Analysis
	a state it was a set of the	Licensed features	Expiration
	Children .	NIRCal.Toolbox	permanent
		NIRCal	permanent
	the second se		

3.21 Context menu (right mouse)

3.21.1 Add Selection to Set

Add the objects currently selected in the plot to the chosen set.

CAUTION: This action will change the contents of your validation or calibration set if you add data to these sets.

3.21.2 Alpha-Blending

2D-Plots support Alpha-Blending for better visualization and review of a huge amount of data.

3.21.3 Anti-Aliasing

2D-Plots support Anti-Aliasing for better graphic quality.

3.21.4 Autorotate

Menu: right mouse / Autorotate

Keyboard A shortcut

Toggles the autorotation status of the plot On/Off. The plot will slowly rotate around the yellow axis.

This menu point is active in the 3D-Scatter or 3D-Surface plot. Make sure this feature is turned off while working with a calibration, because the rotation needs a lot of processor time.

Tip: Zoom or rotate the coordinate system around its center while the left mouse button is pressed.

Keyboard:left / rightrotation around the y-axisup / downrotation around the x-axis+ / -zoom in / zoom out

3.21.5 Choose [x][y] Independent

Applies to 2D scatter plots only. This means that the value of each cell in one column or row of matrix 1 is plotted against the value of the same cell in any column or row of matrix 2. If you open the "Original Property" plot and transpose it you will be able to plot one property against another and check for dependencies.

Related Topic: Choose [xy] Independent

3.21.6 Choose [xy] Independent

Applies to 2D scatter plots only. This means that the value of each cell in one column or row of matrix 1 is plotted against the value of the same cell in the same column or row of matrix 2. In the "True against Predicted" plot this means that the same property is displayed on x and y axis.

Related Topic: Choose [x][y] Independent

3.21.7 Clear Selection

Removes all objects from the current selection. Changes to the current selection do not affect your calibration or validation set.

3.21.8 Colors

The following color models can be used with the top view plot and in 3D surface plot.

nirBone	Grayscale with a light touch of blue.	
nirHot	Low values are black, intermediate red and high values are yellow	
nirJet	Contrast enhancing color model.	
nirCool	Low values are ice blue, intermediate blue and high values are pink.	
nirCopper	Monochrome graduation with a coppertone.	
nirFlag	Extremely contrast enhancing color model.	
nirGray	Gray scale palette.	
nirHSV	Contrast enhancing color model.	
St.palette		

3.21.9 Copy Plot to Clipboard

Copies the plot to the clipboard.

3.21.10 Copy Selection To

Delete the contents of the chosen set and replace it with the objects currently selected in the plot. CAUTION: This action will change the contents of your validation or calibration set if you copy data to these sets.

Add Selection to Set, Load Selection from Set, Remove Selection from

3.21.11 Edit Selection

Opens the Edit Selection Dialog.

Note: Changes to the current selection do not effect your calibration or validation set.

3.21.12 Export Table

Export the table as Excel sheet.

3.21.13 Fix Table Titles

Fixes the row and table titles for better scrolling.

3.21.14 Flip X-Axis

Flips the plot x-axis. Draws the x-axis from lower to upper or vice versa.

3.21.15 Flip Y-Axis

Flips the y-axis. Draws the y-axis from lower to upper or vice versa.

3.21.16 Invert Selection

Toggles the selected objects to be unselected and vice versa. Use this feature if you have copied the selected objects into the calibration set and want to copy the now unselected objects into the validation set.

Changes to the current selection do not affect your calibration or validation set.

3.21.17 Load Selection from Set

The current selection will be replaced by the objects contained in the chosen set. Changes to the current selection do not affect your calibration or validation set.

3.21.18 Large Plots

Menu: Options > Large Plots Keyboard Shortcut L and Ctrl+L for all plots

The axis labels are not displayed and the graphic area of the plot is expanded.

To change this parameter for all plots at the same time use the "Toggle Plot Size" command from the "Window" menu.

3.21.19 Mouse Select

Handling the selection status of objects using the mouse.

Select one corner of the region containing the objects or part of the objects that you want to change the selection status and open a rubber banded rectangle keeping the left mouse button pressed. When you release the mouse button the objects contained will change there status depending on the keyboard keys pressed:

Button status:

 \Box no button: copy the object(s) to the selection the current selection is deleted \Box

shift: add the object(s) to the current selection

- control: toggle the selection status of the object(s)
- □ shift + control: remove the object(s) from the current selection

3.21.20 Mouse Select Lasso

2D-Scatter plots allow with Lasso to create free shape selection of the data. Keyboard: S.

3.21.21 Mouse X-Axis Select

Menu: Options > Mouse X-Axis Select Keyboard : Q

Edit the selection displayed in the small window above the x-Axis.

The selection displayed in this window applies to the other side of the matrix (see Transpose). In a spectra plot the wavelength selection will be displayed in that window by default. Select one corner of the region that corresponds to your x value and open a rubber banded rectangle keeping the left mouse button pressed. When you release the mouse button the x axis region contained will change its selection status depending on the keyboard keys pressed:

Button status:

- no button: copy the object(s) to the selection the current selection is
- deleted shift: add the object(s) to the current selection
- control: toggle the selection status of the object(s)
- shift + control: remove the object(s) from the current selection

3.21.22 Mouse Zoom

Zoom into a plot using the mouse. Keyboard: Z

Select one corner of the detail that you want to enlarge and open a rubber banded rectangle keeping the left mouse button pressed. When you release the mouse button the plot will be updated with the new view rectangle.

3.21.23 Number format

Adjust number of decimal places.

Default depends on the matrix shown.

3.21.24 Open data as

Whilst display of a plot it is possible to switch to another visualization type:

3.21.25 Plot Defaults

The Nircal Configuration dialog will be opened. The default parameters for all views can be edited in that dialog. See also <u>2D-Plots</u>.

3.21.26 Plot Settings

The titles and zoom of a plot can be edited before printing.

3.21.27 Regression Draw Line

A regression line will be drawn for each set that you activate here. The corresponding regression formula will be displayed as a legend.

3.21.28 Regression Copy Equation

The regression formula will be copied to the clipboard and can be pasted to any text or spreadsheet application.

3.21.29 Remove Selection from

Add the objects currently selected in the plot to the chosen set.

NOTE

This action will change the contents of your validation or calibration set if you copy data to these sets.

3.21.30 Snap to Y-Grid

The scale of the y axis is adjusted in such a way, that the upper and lower corners are labeled. The default for this value can be set in the 2D-plot Tab of the Nircal Configuration Dialog.

3.21.31 Snap to X-Grid

The scale of the x axis is adjusted in such a way, that the left and right corners are labeled. The default for this value can be set in the 2D-plot Tab of the Nircal Configuration Dialog.

3.21.32 Show Plane

Menu: Options > Show Plane Available in Plot : 3D-Scatter

Planes for all 3 dimension can be displayed:

- □ Blue and Yellow Axis, X-Plane
- □ Red and Blue Axis, Y-Plane
- □ Red and Yellow Axis, Z-Plane

3.21.33 Show Labels

Show numbers at all points of the plot.

3.21.34 Show Line

Show Scatter as Line.

3.21.35 Show Selection Colors

Line Coloring by Set.

3.21.36 Show Cycle Colors

The color table is used to color each object. When the color table ends, the colors cycle start from the start of the color table again.

3.21.37 Show Property Colors

If the spectra have qualitative properties the coloring shows the property relation.

3.21.38 Transpose Data

Toggles between the two possibilities of connecting the values of a matrix with lines. If you look at a spectra plot this would mean that NirCal either connects all wavelengths for each spectrum or all spectra for each wavelength.

This powerful feature allows you to select certain wavelengths, just as you would select spectra.

3.21.39 Turbo Mode

Menu: Options > Turbo Mode Keyboard : M

Speeding up the display.

When large quantities of spectra are displayed, it is advisable to change the display mode of the view to "turbo". A defined number of wavelengths will be skipped. To edit the number of wavelengths to be skipped use the <u>2D-Plot parameter dialog</u>.

3.21.40 Undo Last Pretreatment

Q

Menu: Undo Last

Use

Remove the last pretreatment from the list of pretreatments attached to the active calibration.

3.21.41 Undo Sequence of Pretreatments

Menu: Undo Sequence

Use

Remove all pretreatments from the list of pretreatments attached to the active calibration.

3.21.42 View Fit

The current plot is resized in such a way, that all objects are inside the visible region.

If you have applied a visibility (e.g. calibration set) to the view, it is possible that certain objects not contained in that set (e.g. validation spectra) will not be visible.

3.21.43 Visibility

Restrict the visibility of the objects displayed in the plot to the chosen set. REMARK: no data will be changed or deleted by this action.

NOTE

Use the shortkeys Ctrl+0,Ctrl+1,...,Ctrl+7 to change between the sets. The visibility set is shown as subtitle in the plot.

3.22 Toolbar

3.22.1 Calibration Toolbar

1 Updates opened views and recalculates, MLR Changes Calibration Method to Multiple Linear Regression Changes Calibration Method to Principal Components Regression PCR Changes Calibration Method to Partial Least Squares PLS Changes Calibration Method to Cluster CLU SIM Changes Calibration Method to SIMCA VS. Changes Validation Method to Validation Set Changes Validation Method to Cross Validation CV Opens Dialog Box to Edit Data Sets ~ Opens Dialog Box to Edit Cross Validation Groups CU S Creates a spectra selection W Creates a wavelength selection E. Creates a property selection Opens Dialog PCs Selection Wizard (Factor) <u>F</u> th. Opens Dialog to edit Calculation Parameters Opens Dialog to edit Blow Up Parameter L uillin Opens Dialog for Outlier Detection Q Calculates Q-Value and shows Protocol 御 Opens Dialog Box for the Calibration Wizard R Shows the saved Calibration Protocol

- Calculates the active calibration and shows the Full Calibration Protocol
- Predict Project
- Application Predict Project
- Multipredict Project
- Predict external
- Application predict external
- Multi Predict external
- Predict external GUID file
- Multi Predict external GUID file
- Application Predict external GUID file

3.22.2 Database Toolbar

- B Open NIRCal Project from Database
- Save NIRCal Project to Database
- Import all Spectra belonging to this Projects Applications
- Assign Applications to the Project
- Search and Import Spectra from Database
- Delete a project from the database

3.22.3 File & Edit Toolbar

- Creates a new NIRCal Project
- Loads a project from the database
- Saves NIRCal Project
- K Cut selected data
- Copy selected data
- Paste selected data
- Print
- Info / About NIRCal

3.22.4 Lifecycle

See <u>Calibration Handling</u> for details regarding the use of the lifecycle model on calibrations. More detailed general information regarding the NIRWare Lifecycle can be found in the NIRWare Software Manual.

Delete calibration

3.22.5 Modules

뮑

Run module

3.22.6 Options Toolbar

Opens Dialog to change NIRCal Configuration

3.22.7 Pretreatments Toolbar

- Normalization by Closure
- Normalization by Maxima
- Normalization between 0 and 1
- Normalization to Unit Length
- Normalization by Sdev
- Smoothing <u>Average 3 points</u>
- Smoothing <u>Average 9 points</u>
- Smoothing Savitzky-Golay 9 points
- \$ 1stderivative <u>BCAP 5 points</u>
- $\frac{1}{3}$ 1st derivative <u>Taylor 3 points</u>
- 1st derivative <u>Savitzky-Golay 9 points</u>
- 2nd derivative <u>BCAP 3 points</u>
- X_3^{nd} 2nd derivative <u>Taylor 3 points</u>
- 2nd derivative <u>Savitzky-Golay 9 points</u>
- 2nd derivative Taylor <u>3 points Segment5 Gap5</u> 3rd
- derivative <u>Taylor 5 points</u>

- Normalization Multiplicative Scatter Correction Full
- Normalization Multiplicative Scatter Correction Amplification
- <u>Offset</u> Multiplicative Scatter Correction
- SNU Normalization Standard Normal Variate
- VS Normalization Variance Scaling
- Mean Centering
- KM Transformation Kubelka Munk
- 5DL Second Derivative / Logarithm
- Transformation <u>Absorbance</u>
- 10⁸ Transformation <u>Absorbance inverse</u>
- O Undo Last
- Undo Sequence

3.22.8 Pretreatments Advanced Toolbar

- x² <u>Squares</u> each data point in the spectra
- \bar{x}^{1} <u>Divides</u> one through each data point: Reciprocal 1/s
- Subtract DC. Uses C-Set Selection
- Shifts negative offset of each spectra to zero. Uses C-Set Selection
- +c Add a Constant to each datapoint
- Subtract Spectrum
- Divide by Spectrum
- The second secon

3.22.9 Pretreatments Minibar Toolbar

- Normalization to Unit Length
- Normalization between 0 and 1
- Smoothing <u>Average 3 points</u>
- \$ 1st derivative <u>BCAP 5 points</u>
- X¹ 1st derivative <u>Savitzky-Golay 9 points</u>
- 2nd derivative <u>Savitzky-Golay 9 points</u>
- Multiplicative Scatter Correction Full
- SNV Normalization Standard Normal Variate

杰 Offset Mean Centering Transformation Absorbance ‡وما 1 Linear Filter D Undo Last D **Undo Sequence** Fits the hole plot to the window pp. Opens Pretreated Spectra Graphic in new window 杨 Opens Original Spectra Graphic in a new window Ħ Opens Original Property Table in a new window

3.22.10 Pretreatments Gap2

- Smoothing Average 3 Points Gap2
- Smoothing Average 9 Points Gap2
- Smoothing Savitzky-Golay 9 Points Gap2
- 1st Derivative BCAP 5 Points Gap2
- 1st Derivative Taylor 3 Points Gap2
- 3 1st Derivative Savitzky-Golay 9 Points Gap2
- 2nd Derivative BCAP 3 Points Gap2
- 2nd Derivative Taylor 3 Points Gap2
- 2nd Derivative Savitzky-Golay 9 Points Gap2
- 2nd Derivative Taylor 3 Points (Segment5 Gap5) Gap2
- 3rd Derivative Taylor 5 Points Gap2
- Undo Last
- O
 Undo Sequence

3.22.11 Project Toolbar

- Copens Project Journal
- cm⁻¹ Change X-Unit to [cm⁻¹]
- nm Change X-Unit to [nm]
- Add spectra to Project
- Delete selected spectra
- Add property to project
- Delete selected property
- Opens Edit Selection Dialog

- Load selection from C-Set spectra
- Sea Load selection from V-Set spectra
- Load selection from C-Set wavelengths
- Pc Load selection from C-Set properties
- Ec Load selection from C-Set factors

3.22.12 Search Import Export Toolbar

- Export spectra from project to file.

Import spectra file to project.

Search spectra in file and import to project.

3.22.13 Window Toolbar

- Fit all windows
- Cascade all windows
- Tile all windows horizontally
- Tile all windows vertically
- Close all windows, except NIRCal-Explorer

3.22.14 Wizard Toolbar

- Starts the <u>Calibration Wizard</u>.
- Opens Dialog to Edit <u>Calculation Parameters</u>
 - Toolbox

00.

3.22.15 Wizard Workspace

- Shows an overview of the most significant plots
- Shows plots for spectra selection
- Shows plots for wavelength selection
- Shows plots for property selection
- Shows plots for primary PCs (factor) selection
- F2 Shows plots for secondary PCs (factor) selection
- Shows plots for <u>outlier detection</u>
- Shows time dependency plots
- Shows creator dependency plots

L. Shows instrument dependency plots B Shows property dependency plots 둼 Loads all plots saved as workspace 1 醫 Loads all plots saved as workspace 2 醫 Loads all plots saved as workspace 3 點 Saves all opened plots as workspace 1 諸 Saves all opened plots as workspace 2 13 Saves all opened plots as workspace 3

3.22.16 Zoom & Select Toolbar

Q	Zoom window (Z)
	Data selection (S)
Q	Data selection (S), Lasso selection in 2D-Scatter
	x-Axis selection (Q)
	View Fit (F)
	Large plot (L)
	Snap x-Axis (X)
₀₩	Snap y-Axis (Y)
≙	Flip x-Axis
	Flip y-Axis
5	Transpose data (T)
	Top view (V)
	Front view (V)
1	2-D Line plot (N)
	1-D Scatter plot (H)
	2-D Scatter plot (J)
杰	3-D Scatter plot (K)
*	3-D Surface plot (B)
	Table grid (G)
	Clear selection (C)
1	Invert selection (I)

plots

- Edit selection (E) 25
- 206 Line coloring by cycle (2)
- 28 Line coloring by property (3)

Line coloring by set (1)

- Us Copy selection to User set
- All Visibility to all sets (Ctrl+0)
- Us Visibility to user set (Ctrl+1)
- Cal Visibility to calibration set (Ctrl+2)
- Val Visibility to validation set (Ctrl+3)
- Visibility to residual outlier set (Ctrl+4) Re
- Visibility to loading outlier set (Ctrl+5) Lo
- Visibility to property outlier set (Ctrl+6) Pr
- Visibility to leverage outlier set (Ctrl+7) Le

4 Appendix

4.1 Keyboard Shortcuts

To following keys are used together with the NIRCal selections:

Button	Status			
no button	copy the object(s) to the selection the current selection is deleted			
shift	add the object(s) to the current selection			
control	toggle the selection status of the object(s)			
shift + control	remove the object(s) from the current selection			
А	2D: Anti-Aliasing (a), 3D: <u>Autorotate</u>			
В	2D: Alpha-Blending (b), 3D: Show Box			
С	Clear Selection			
E	Edit Selection			
F	<u>View Fit</u>			
G	View Data as table			
Н	View Data as 1D-Scatter plot			
	Invert Selection			
J	View Data as 2D-Scatter plot			
К	View Data as 3D-Scatter plot			
L	Large Plot			
Ν	View Data as 2D-Line plot			
Р	Plot Settings			
Q	Mouse X-Axis Select			
R	2D: Show Labels (r), 3D: Mouse Rotate			
S	Mouse Select, Mouse Select Lasso			
Т	Transpose data			
V	Toggle between Top View and Front View			
W	Show Line			
Y	Snap to Y-Grid			
Х	Snap to X-Grid			
Z	Mouse Zoom			
0	Show Legend			
1	Show selection Colors			
2	Show Cycle Colors			
3	Show Property Colors			
Alt+M+N	Start "Spectra & Nearest Neighbor Select" module			
Ctrl+0	Visibility All-Set			
Ctrl+1	Visibility User-Set			
Ctrl+2	Visibility Calibration-Set			
Ctrl+3	Visibility Validation-Set			
Ctrl+4	Visibility Residual Outlier Spectra			
Ctrl+5	Visibility Score Outlier Spectra			
Ctrl+6	Visibility Property Outlier Spectra			
Ctrl+7	Visibility Leverage Outlier Spectra			
Ctrl+A	Select all			
Ctrl+C	Copy selection to clipboard			
Ctrl+E	Edit module			
Ctrl+F	Fit all windows			
Ctrl+L	Toggle Plot Size			
Ctrl+N	New Project			
Ctrl+O	Open Project from file			

Button	Status
Ctrl+r	Show full labels
Ctrl+S	Save Project
Ctrl+T	Fix Table titles during scrolling
Ctrl+V	Paste selection
Ctrl+X	Cut selection
Ctrl+Z	Undo
Ctrl+Shift+M	Import latest Application spectra from DB
Ctrl+Shift+S	Save Project
Ctrl+Alt+R	Run module
F5	Update
F8	Show Calibration Protocol
Ctrl+F5	Overview Plot
Shift+F5	Calculate all

4.2 Tips and Tricks

- 1. Fixing table titles
- 2. Plot / Graphic zooming
- 3. Zooming in and out
- 4. NIR-Explorer show all entries
- 5. Workspaces
- 6. working with Selections and Visibility (Part 1)
- 7. working with Selections and Visibility (Part 2)
- 8. working with Selections Merge, Intersect, Exclusive (Part 3)
- 9. working with Selections (Part 4)
- 10. working with Selections (Part 5)
- 11. customize derivatives and smooting pretreatments
- 12. working with Selections "Undo" (Part 6)

Fixing table titles

Open a table, i.e. Property Table, press Ctrl-T.

This will fix the table titles and header while scrolling down a large table.

Plot / Graphic zooming

After a zoom-in or a pretreatment change, the plot can be zoomed to fit all the data in the view with the keyboard quick key F (View Fit).

If more than one plot has to be fitted, then use Ctrl+F which fits all plot views. It can be found in the menu Window->Fit All Windows.

Also there is the Toggle Plot Size. If many Views are open the Ctrl+L can also be helpful to get more place on the screen for the data.

Zooming in and out

You can zoom plots and tables in/out by holding the Ctrl key down and scroll up/down on the mouse. By the way this trick also works in other applications in a similar way! (Word, Excel, Internet Explorer...)

NIR-Explorer show all entries

To open all collapsed entries in the NIR-Explorer tree, click on the tree's root on "Project" and press the * (asterisk) key on the numberpad.

Workspaces

When you want to see a set of other interesting plots, you can customize it. Simply open as many plots and tables as you like and arrange them in your favourite position on the screen. Try out and explore new plots by viewing Matrices from the NIR-Explorer.

Save your customizing with View->Save Workspace Save->New... enter i.e. "quantitative overview". Load it (project independent) with View->Load Workspace-> ...

To have faster access to your workspaces, there are 3 custom workspace icons on the toolbar "Wizard Workspace". L1,L2,L3 for loading it and S1,S2,S3 for saving it before.

Working with Selections and Visibility (Part 1)

In the NIR-Explorer -> Calibrations -> (any non-persistent calibration) -> Data Sets there are 4 selection set types:

- Spectra
- Wavelengths
- Properties
- PC

In each NIRCal plot, below the plot title, the selection name that defines the visibility of the data displayed is visible. Typically the "All"-Set is used as default, i.e. "All Spectra" in the "Original Spectra" plot.

In the plot context menu, choose Visibility->"Calibration Spectra" to change the visibility for that plot to the C-Set spectra only. The plot subtitle changes immediately to "Calibration Spectra" and all non C-Set spectra disappear from in the plot.

You can open the same plot multiple times and change the visibility individually for each plot to any selection.

As mentioned in Hint#5, you can save them to your own workspaces.

Working with Selections and Visibility (Part 2)

(please read Part 1 first)

Now we want to get a visibility, for example the first 10 spectra in the project. How do we do that ?

Have a look at the available Spectra Selections in the NIR-Explorer:

- □ All Spectra : a selection for ALL the spectra
- User Spectra : that is the users notepad for spectra selections
- Calibration Spectra : C-Set Spectra (Calibration Input)
- □ Validation Spectra : V-Set Spectra (Calibration Input)
- Residual Outlier Spectra : (Calibration Output)
- Loading Outlier Spectra : (Calibration Output)
- □ Property Outlier Spectra : (Calibration Output)
- Leverage Outlier Spectra : (Calibration Output)

To create a selection that contains the first 10 spectra, we can edit the "User Spectra" by double clicking on "User Spectra"

Note: Only the actual active calibration can be edited.

In the "Edit Selection" dialog choose "Custom", press "Clear" and overwrite "nothing selected" with "1-10", then press "apply" to see if your input is accepted. Press OK, go to the "Original Spectra" plot and set Visibility->User Spectra.

That's it. You will see only the first ten spectra from our project.

By the way, Visibility settings are also possible in Table views!

Working with Selections - Merge, Intersect, Exclusive (Part 3)

(please read Part 1 and 2 first)

How to create complex selections by merging, inverting and intersections.

NIR-Explorer -> Calibrations -> (any non-persistent calibration) -> Data Sets -> Spectra On the right side of the NIR-Explorer several items can be selected, i.e. selection of "User Spectra" and "Calibration Spectra". Hold down the Ctrl key while selecting or deselecting with the right mouse button. Then the context menu will have more options to copy the selection i.e. under the menu "Copy to Selection".

There are three set calculation methods available (if more than one set is selected):

- □ Merge : combines sets
- □ Intersect : keeps only the overlapping of the sets
- Exclusive : keeps only the non overlapping of the sets

Merge

combine selections - OR

(e.g. **combine** C-Set and V-Set to User-Set as visibility filter, as the Toolbox can do auto.)

Intersect

find selection overlaps - AND (e.g. select Leverage- and Residual-outliers)

Exclusive

only in one selection - XOR (e.g. select unique outliers)

"Copy to Selection" means that the result of the set calculation is copied or added by "Add to Selection" or removed by "Remove from Selection" to the selection.

The "Selection" is the temporarily visualised red selection in the plots and tables.

This selection is not available in the NIR-Explorer, it is only temporarily visualised and can be used for calculations with selection sets. In the plot context menu there are functions to work with that selection:

- Clear Selection C"
- "Invert Selection I"
- "Edit Selection E"
- "Load Selection from->"

Working with Selections (Part 4)

Each matrix has two selection types, i.e. "Original Spectra" owns the "Spectra Selection" and the "Wavelength Selection". The selection currently used in a plot is defined by Option->Mouse "Mode":

- "Mouse Select S" -> i.e. "Original Spectra"
- □ "Mouse X-Axis Select Q" -> i.e. "Wavelength Selection"

Let's try this key sequence slowly to see the effects on the selection. Watch what happens when you invert a selection.

Starting on "Original Spectra" plot and press the quick keys:

- 1. I : to invert the selection
- 2. I : to invert the selection
- 3. Q : to work on the X-Axis
- 4. I : to invert the (other) selection
- 5. I : to invert the (other) selection
- 6. S: to work on the "lined"-data
- 7. I : to invert the selection
- 8. I: to invert the selection

Note: You can freely use "Selection" and "User Selection" for working with the selection sets with no impact to the calibration results. This works with all selection types, also for the Wavelength selections.

Working with Selections (Part 5)

To edit all the selections in one dialog, go to main menu Calibration->Change Data Sets->Edit Data Sets... or get the same thing via the Calibration Toolbar "Edit Data Sets".

This is the same dialog as in the Calibration Wizard "Data Sets..." In that dialog the selection can be chosen from the name drop down list. So it's easy to copy and paste selection text in the custom mode (default for that dialog) between the selections.

Customize derivatives and smoothing pretreatments

The pretreatment "Savitzky Golay 2nd derivative (15 pt. 2nd order)", as we can see in [1] that the coefficients for 2nd derivative 15 points are: 91,52,19,-8,-29,-48,-53,-56,-53,-48,-29,-8,19,52,91and the norm scale is: 6188

NOTE

Due to errors in that [1] paper, use this coefficients: 91,52,19,-8,-29,-44,-53,-56,-53,-44,-29,-8,19,52,91

-44 instead of -48 and the norm scale is: 6188

To use this in the **Linear Filter** pretreatment enter this : **91,52,19,-8,-29,-44,-53,-56,-53,-44,-29,-8,19,52,91,6188** that is in the form oefficient1, coefficient2, ... , coefficient n , norm scale

In the Calibration Protocol the customized coefficients for Linear Filter pretreatment are listed. To edit and change the coefficients, simply remove the pretreatment and add Linear Filter again.

References:

[1] A. Savitzky and M.J.E. Golay "Smoothing and differentiation of data by simplified least squares procedures" Anal. Chem., 36, 1627-1639 (1964)

Working with Selections - "Undo" (Part 6)

Losing a well executed selection by making a mistake is very frustrating. To undo a selection change open the project journal via main menu **Project->Journal->Show**. Scroll to the end of the journal by using the mouse or press **Ctrl+End**.

All recent changes are logged.

The old overwritten selection can be found and can be **copied** as text and **pasted** in the custom edit mode of the selection.

NOTE

Logging depends on the Logging Filter settings Edit->Options->Journal.

4.3 Conventions / Terminology

NIRCal uses the name conventions for chemometrics terms according to Malinowski. This notation has been used since the first chemometrics package BCAP for the NIRVis spectrometers. In order to be consistent and to guarantee a smooth transfer from BCAP to NIRCal this notation has been kept for NIRCal as well (see NIRCal 4.21 user manual, Appendix 2).

Malinowski Notation	Martens / Naes Notation
Factors	Loadings / PC's (Principal Components)
Loadings	Scores

	Matrices			Matrix Dimensions				
NIRCal 4	Spectrum	Property	Factor	Loading	Factors	Wave- lengths	Spectra	Properties
NIRCal 5	Spectrum	Property	Loading	Score	PC's	Wave- lengths	Spectra	Properties
Unscram- bler	х	у	Loading	Score	PC's	x- variables	Samples	y- variables

4.3.1 Temporary Settings

Open the folder Matrices in the NIR-Explorer. Right clicking the mouse on the appropriate matrix name opens a pop-up menu. Clicking on Rename enables the user to change the name of the matrix.

4.3.2 Permanent Settings

In order to change the names permanently it is necessary to perform the changes in the registry settings.

HKEY_CURRENT_USER\Software\Buchi\NIRCAL\Terminology

When performing the changes (including All Factors, etc.) the name convention will be changed permanently and will be used for the NIR-Explorer, tables and graphics.

4.4 Characteristic absorbance table

This absorbance table is published for food. It can be used also for chemicals. Because the matrix is different the absorptions can be slightly different.

Wavelength [nm]	Wavenumber [cm ⁻¹]	Chemical bonds	Product Example
1000	10000	O-H str.second overtone	ArOH
1015	9852	2x C-H str.+3x C-H def.	CH3
1020	9804	2x N-H str.+2x amide I	protein
1020	9004	N-H str second overtone	ArNH2
1030	9709		RNH2
1037	9643	2x C-H str.+2x C-H	oil
1053	9497	def.+(CH2)n	CH2
1060	9434	N-H str.second overtone	RNH2
1080	9259	2x C-H str.+2x C-C str.	benzene
1097	9116		cyclopropane
1143	8749		aromatic
1152	8681		CH3
1170	8547	C-H str.second overtone	HC=CH
1195	8368		CH3
1215	8230		CH2

Wavelength [nm]	Wavenumber [cm ⁻¹]	Chemical bonds	Product Example
1360	7353	2x C-H str + C-H def	CH3
1395	7168		CH2
1410	7092	O-H str.first overtone	ROH
1415	7067	$2x C_{-}H$ str $\pm C_{-}H$ def	CH2
1417	7057		aromatic
1420	7042		ArOH
1430	6993	O-H str.iirst overtone	sucrose,starch
1440	6944		СН
1446	6916		aromatic
1450	6897	O-H str.first overtone	starch,H2O
1460	6849	N-H str first overtope	CONH2
1471	6798		CONHR
1480	6757	O-H str.first overtone (intramol.H-bond)	glucose
1483	6743	N H atr first sylartops	CONH2
			CONHR
1490	6711	N-H str.first overtone (intramol.H-bond)	CONH2
		O-H str.first overtone (intramol.H-bond)	cellulose
1492	6702		ArNH2
1500	6667	N-H str.first overtone	NH
1510	6623		protein
		O-H str.first overtone	CONH2
1520	6579	N-H str.first overtone (intramol.H-bond)	ROH
1528	6545	O-H str.first overtone (intramol.H-bond)	starch
1530	6536	N-H str.first overtone	RNH2
1533	6523	C-H str.first overtone	СН
1540	6494	O-H str.first overtone (intramol.H-bond)	starch
1570	6369	N-H str.first overtone	CONH-
1580	6329	O-H str.first overtone intermol.H-bond)	starch,glucose
1620	6173		CH2
1645	6079		R-CH-CH
1660	6024		cis-RCH=CHR
1685	5935]	aromatic
1695	5900	C-H str first overtope	CH3
1705	5865		CH3
1725	5797		CH2
1740	5747		SH
1765	5666		CH2
1780	5618		cellulose
1820	5495	O-H srt.+2x C-O str.	cellulose
1900	5263	O-H str.+2x C-O str. C=O str.second overtone	starch -CO2H
1908	5241	O-H str.first overtone	РОН
1920	5208	C=O str.second overtone	CONH
1940	5155	O-H str.+ O-H def.	H2O
1950	5128	C=O str.second overtone	-CO2R
1960	5102	N-H asym.str.+ amide II	CONH2

Wavelength [nm]	Wavenumber [cm ⁻¹]	Chemical bonds	Product Example
1980	5051		protein
0000 5000		2x O-H def.+ C-O def.	starch
2000	5000	N-H sym.str.+amide II	CONH2,CONHR
2030	4926	C=O str.second overtone	CONH2
2050	4070	N-H sym.str.+ amide II N-H	protein
2030	4070	asym.str.+ amide II O-H	CONH2
2080	4808	str.+ O-H def.	ROH, sucrose, starch
2100	4762	2x O-H def.+ 2x C-O str	starch
2110	4739	N-H sym.str.+ amide III	CONH2,CONHR
2132	4690	N-H str.+ C=O str.	amino acid
2140	4673	=C-H str.+ C=C str.	HC=CH
2150	4651	2x amide I+ amide III	CONH2
2160	4630		CONHR
2180	4587		protein
2190	4566	CH2 asym.str.+ C= str.	HC=CH
2200	4545	C-H str.+ C=O str.	-CHO
2242	4460	N-H str.+ NH3+ def.	amino acid
2252	4440	O-H str.+ O-H def.	starch
2276	4394	O-H str.+ C-C str.	starch
2280	4383	C-H str.+ C-H def.	CH3
2294	4359	N-H str.+ C=O str.	amino acid
2310	4329	N-H str.+ C-H def.	CH2
2323	4305		CH2
2336	4281		cellulose
2347	4261	CH2 sym.str.+ =CH2 def.	HC=CHCH2
2352	4252	C-H def.second overtone	cellulose
2380	4202	O-H def.second overtone	ROH
2461	4063	C-H str.+ C-C str.	starch

5 Software installation

5.1 Software installation

5.1.1 Important Notes

The latest NIRWare and NIRCal cannot be installed together with previous versions. Should there be an existing installation of NIRWare and NIRCal it will be <u>removed</u> during installation. An existing NIRWare Database from a prior installation will be upgraded.

-> Backup before installation!

A user with administrator rights on the operating system is required to install the software and then as well to change following settings within the NIRWare Suite after installation of the SW:

- changing the IP-address of NIRFlex N-500
- □ change of the SQL Server path
- backup and restore the database to the default folder in ...\program files\...
- import of the licenses

5.1.2 System requirements

Hardware:

Processor:	Intel Core i3 or higher and 1.4 GHz or faster
RAM:	4GB or higher
HDD:	20GB free hard disk space
DRIVE:	DVD-ROM drive
Network Adapter:	1 x 100 Mbit/s LAN (2x 100 Mbit/s LAN recommend)
Display Resolution:	1280x1024

Operating System:

Windows 7 Professional / Enterprise / Ultimate (64-bit) or

- Windows 10 Pro / Enterprise 2016 LTSB (64-bit)

Firewalls need to be stopped during installation (Note: We recommend not to connect to the internet without protection from a fire wall.)

the internet without protection from a fire wall.)

5.1.3 Other requirements

□ Administrator rights (on the OS) required for installation

5.1.4 Installation procedure

□ Insert the Installation CD. In the opening window, click on "Install NIRWare..."

The InstallShield Wizard is opened.

2	Welcome to the InstallShield Wizard for Buchi NIRSolutions	
	The InstallShield(R) Wizard will install Buchi NIRSolutions on your computer. To continue, click Next.	
	WARNING: This program is protected by copyright law and international treaties.	
	< Back OK Cancel	

Click OK

Please read the following license agr	reement carefully.		
Important - Please Read Carefully This licence agreement is a legal ag Labortechnik AG (Buchi) and the ag covered by this agreement is the Bu copying, or otherwise using the softw licence agreement.	preement between you (the l gent you bought the softwar ichiLicenseManager softwa ware, you agree to be boun	icensee) and Buchi e from. The software re package. By installing, d by the terms of this	
1. The Product 1.1 This agreement gives licence to	the licensee to use the soft	ware which is owned by	>
I accept the terms of the license a I do not accept the terms of the license all shield	agreement icense agreement		

Accept the license agreement to continue the installation and click Next to continue.

BuchiLicensel	lanager - InstallShield Wizard 🛛 🛛 🔀
Setup Type Select the set	up type to install.
Please select	a setup type.
Complete	All program features will be installed. (Requires the most disk space.)
O Custom	Select which program features you want installed. Recommended for advanced users.
InstallShield ——	< Back Next > Cancel

□ We recommend to select the Complete installation. Then click Next to continue.

-	Buchi NIRSolutions - InstallShield Wizard
	Ready to Install the Program The wizard is ready to begin installation.
	Click Install to begin the installation.
	If you want to review or change any of your installation settings, click Back. Click Cancel to exit the wizard.
	InstallShield < Back Install Cancel

Click Install to Install to start the installation process.

InstallShield Wizard Completed	
The InstallShield Wizard has successfully installed Buchi NIRSolutions. Click Finish to exit the wizard.	
< Back Finish Cancel	

Click Finish to exit the Wizard.

The applications are stored by default under C:\Program Files\Buchi\NIRSolutions\ and can be opened with Start > Programs > Buchi > NIRSolutions.

The following modules are available:

- Management Console
- Operator
- Buchi Service Manager
- NIRCal

5.2 Software update

Software update over internet is discontinued since NIRWare 1.4.

5.3 Software licenses

After Installation of NIRWare or NIRCal the software can be used in DEMO mode for 60 days. Within these 60 days it is recommended to register the software (NIRCal and NIRCal Toolbox) and apply for a license.

5.3.1 Software Registration

The registration form for NIRCal and Toolbox can be saved as an *.xml file and needs to be sent to your Buchi contact person, e.g. as an email attachment.

The form can be opened using the "NIRCal" --> Menu: Help > Software Registration..." or clicking the button "Register..." on the startup of a trial version.

Büchi Software Evaluation Information			
	NIRCal 5.6.2000		
<image/>	This is a trial version of NIRWare/NIRCal. If you encounter any kind of problems during your evaluation, please feel free to contact a buchi sales representative.		
60 days left for evaluating NIRCal			
	Import Register OK		

The Software Registration dialog opens.

Software Registration			
Buchi software is license protected. The software will only be available on the computer where you fill out this registration form, because the license will be bound to the HostID of this computer. The HostID is a unique machine identifier that will be used by the software to ensure the license agreement. Please fill out the registration form below and send the registration to your buchi sales representative. Thank you for using buchi software!			
Software:	NIRCal		
AN:		AN and SN numbers are	
SN:		mandatory if the sticker is in the DVD-Box!	
HostID of this computer.	D067E5244635		
Hostname of this computer.	DESKTOP-B97M6L6		
Company:	BUCHI Labortechnik AG		
Name and sumame:	Jon Doe		
Title:			
eMail:	j.doe@buchi.com		
Phone:			
Address:			
Postal code:			
City:	, 		
Country:	Switzerland	•	
Remark:		OK Cancel	

Fill it out and send it to your Buchi sales representative.

5.3.2 Activating the License

The license are generated based on the information provided in the registration form. To activate the license in NIRCal select Help > Import License.

NOTE

- The user needs administrator rights on the OS to import the license file.
- NIRCal5, NIRWare Operator and also licenses for pre-calibrated applications are node locked. This means that these SW Licenses are bound to the PC (Host-ID) from where the registration file was filled out.

BUCHI Affiliates:

Europe

Switzerland/Austria

BÜCHI Labortechnik AG CH - 9230 Flawil T +41 71 394 63 63 F +41 71 394 64 64 buchi@buchi.com www.buchi.com

Italy

BUCHI Italia s.r.l.

IT - 20010 Cornaredo (MI) T +39 02 824 50 11 F +39 02 575 12 855 italia@buchi.com www.buchi.com/it-it

Benelux

BÜCHI Labortechnik GmbH Branch Office Benelux NL-3342 GT Hendrik-Ido-Ambacht T +31 78 684 94 29 E +31 78 684 94 30 benelux@buchi.com

Russia

BUCHI Russia/CIS Russia 127287 Moscow T +7 495 36 36 495 russia@buchi.com

www.buchi.com/ru-ru

www.buchi.com/bx-en

France

BUCHI Sarl FR – 94656 Rungis Cedex T +33 1 56 70 62 50 F +33 1 46 86 00 31 france@buchi.com www.buchi.com/fr-fr

United Kingdom

BUCHI UK Ltd. GB - Oldham OL9 9QL T +44 161 633 1000 F +44 161 633 1007 uk@buchi.com www.buchi.com/gb-en

Germany

BÜCHI Labortechnik GmbH

DE - 45127 Essen T +800 414 0 414 0 (Toll Free) T +49 201 747 49 0 F +49 201 747 49 20 deutschland@buchi.com www.buchi.com/de-de

Germany

BÜCHI NIR-Online

DE - 69190 Walldorf T +49 6227 73 26 60 F+49 6227 73 26 70 nir-online@buchi.com www.nir-online.de

America

BUCHI Brasil Ltda.

T +55 19 3849 1201 F +55 19 3849 2907

brasil@buchi.com

www.buchi.com/br-pt

BR – Valinhos SP 13271-200

Brazil

USA/Canada

BUCHI Corporation US-New Castle, DE 19720 T +1 877 692 8244 (Toll Free) T +1 302 652 3000 F +1 302 652 8777 us-sales@buchi.com www.buchi.com/us-en

Asia

China

BUCHI China CN – 200052 Shanghai T +86 21 6280 3366 F +86 21 5230 8821 china@buchi.com www.buchi.com/cn-zh

Korea

BUCHI Korea Inc.

KR - Seoul 153-782 T +82 2 6718 7500 F +82 2 6718 7599 korea@buchi.com www.buchi.com/kr-ko

India

BUCHI India Private Ltd. IN – Mumbai 400 055 T +91 22 667 75400 F +91 22 667 18986 india@buchi.com www.buchi.com/in-en

Malaysia

BUCHI Malaysia Sdn. Bhd.

MY - 47301 Petaling Jaya, Selangor T +60 3 7832 0310 F +60 3 7832 0309 malaysia@buchi.com www.buchi.com/my-en

Indonesia

PT. BUCHI Indonesia ID – Tangerang 15321 T +62 21 537 62 16 F +62 21 537 62 17 indonesia@buchi.com www.buchi.com/id-in

Singapore

BUCHI Singapore Pte. Ltd.

F +65 6566 7047 singapore@buchi.com www.buchi.com/sg-en

Japan

Nihon BUCHI K.K. JP – Tokyo 110-0008 T +81 3 3821 4777 F +81 3 3821 4555 nihon@buchi.com www.buchi.com/jp-ja

Thailand

BUCHI (Thailand) Ltd.

TH - Bangkok 10600 T +66 2 862 08 51 F +66 2 862 08 54 thailand@buchi.com www.buchi.com/th-th

BUCHI Support Centers:

South East Asia

BUCHI (Thailand) Ltd. TH-Bangkok 10600 T +66 2 862 08 51 F +66 2 862 08 54 bacc@buchi.com www.buchi.com/th-th

Middle East

BÜCHI Labortechnik AG UAE – Dubai T +971 4 313 2860 F +971 4 313 2861 middleeast@buchi.com www.buchi.com

Latin America

BUCHI Latinoamérica S. de R.L. de C.V. MX – Mexico City T +52 55 9001 5386 latinoamerica@buchi.com www.buchi.com/es-es

We are represented by more than 100 distribution partners worldwide. Find your local representative at: www.buchi.com

SG – Singapore 609919 T +65 6565 1175