
Kjeldahl determination of nitrogen and protein Sample preparation, digestion, distillation and titration

What is determined?

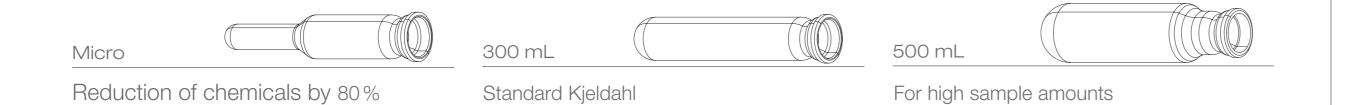
Protein is determined by the analysis of the nitrogen content. From this, the protein content is calculated. Protein consists of amino acids which contain nitrogen (N) in the amino group.

Other applications: TKN, ammonium, TVBN, urea, nicotine

The digestion

Digestion: $(C_nH_nN_nO_n) + H_2SO_4 \rightarrow CO_2 + SO_2 + H_2O + NH_4^+$

Organic matter is destroyed by boiling in concentrated sulfuric acid. Kjeldahl Tablets raise the boiling point and accelerate the process.



Sample preparation and weighing

Milling

The samples have to be homogeneous.

Sample tube size

Weighing

The actual weight of a sample depends on the nitrogen content as well as on the inhomogeneity of the sample.

	Sample: weight [g]					Titrant concentration [N]			
N [mg]	5	2	1	0.5	0.125	0.01	0.05	0.1	0.5
per glass	N [%]					Titrant consumption for sample [mL]			
0.5	0.01	0.03	0.05	0.10	0.40	3.6			
2.0	0.04	0.10	0.20	0.40	1.60	14.3	2.9		
2.5	0.05	0.13	0.25	0.50	2.00		3.6	1.8	
7.0	0.14	0.35	0.70	1.40	5.60		10.0	5.0	
10.0	0.20	0.50	1.00	2.00	8.00		14.3	7.1	1.4
50.0	1.00	2.50	5.00	10.00	40.00				7.1
100.0	2.00	5.00	10.00	20.00	80.00				14.3

Procedure:

· Select N % of sample

Select titrant concentration

· Choose weight in order that the titrant consumption can be expected between 3 and 17 mL

9	9000		

Distillation: $NH_4^+ + OH \rightleftharpoons NH_3$ (Gas) + H_2O

The digestion mixture is alkalized with NaOH prior to distillation to free up the ammonia. The ammonia is steam distilled into an acidic receiver solution.

Step	Why	How much	Rule-of-the-th	umb			
Step 1: Dilution							
H ₂ O dest.	Dilution of the strongly acidic solution, prevents violent reactions	25 – 90 mL	4 mL per mL use	d H ₂ SO ₄			
Step 2: Alkalinization							
NaOH 32 %	Conversion of NH_4^+ in NH_3 (gaseous)	15 – 90 mL	4.5 mL per mL us	sed H ₂ SO ₄			
Step 3: Preparation of t	he receiver						
H ₃ BO ₃ (pH 4.65)	To collect the distilled NH_3 . NH_3 is bound as borate complex $NH_4B(OH)_4$.	40 – 70 mL	$2 \% H_{3}BO_{3}$ with KCI for low N contents 0.02 – 6.75 mg/sample tube				
			4 % H ₃ BO ₃ for medium and high N conte 6.75 – 125 mg/sample tube				
Step 4: Distillation							
Water steam (100 %)	Separation of NH_3 by boiling of the sample	180 – 300 s	Distillation time:	180 s with KjelMaster 240 s with others			
Step 5: Collection	Step 5: Collection						
NH ₃	In boric acid receiver of pH 4.65		Condenser oulet be completely im	tube and electrode must mersed			

The amount of H_2SO_4 for digestion is given by

1. Conversion of K_2SO_4 to $KHSO_4$ (K_2SO_4 is a component of Kjeldahl Tablets) approx. 2 – 3 mL

2. Consumption by organic matter

Organic matter	H ₂ SO ₄ / g [mL]	Example: Salami	e.g. for 1.5 g weight (weight \cdot organic matter)
Fat	9.7	27.3 %	$1.5 \cdot 9.7 \cdot \frac{27.3}{100} = 3.97 \text{ mL}$
Protein	4.9	20.6%	$1.5 \cdot 4.9 \cdot \frac{20.6}{100} = 1.51 \text{ mL}$
Carbohydrates	4.0	0.0%	$1.5 \cdot 4.0 \cdot \frac{0.0}{100} = 0.0 \text{ mL}$

3. Losses due to evaporation

approx. 1 mL/h

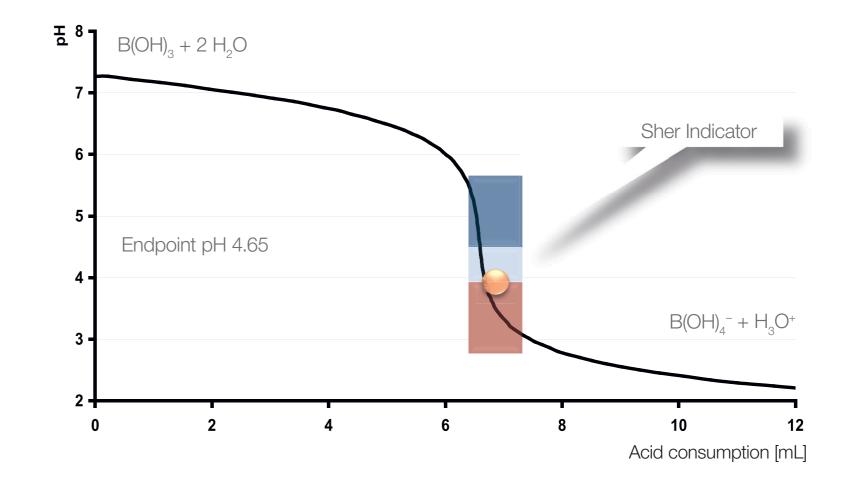
4. Remaining volume

= Quantity of the used Kjeldahl Tablets (e.g. 10 g Tablets = 10 mL H_2SO_4)

 H_2SO_4 volume = conversion + (total consumption by org. matter) + evaporation + remaining volume 3 mL + (3.97 + 1.51 + 0.00) mL + 1 mL + 10 mL = 18.48 mL ~18 mL

Kjeldahl Tablets

Article	Order code	Composition	Weight
Titanium	11057980	3.5 g K $_2$ SO $_4$ / 0.105 g CuSO $_4$ \cdot 5 H $_2$ O 0.105 g TiO $_2$	3.71 g
Missouri	11057982	4.98 g K $_2$ SO $_4$ / 0.02 g CuSO $_4$ \cdot 5 H $_2$ O	5 g
ECO	11057983	3.998 g K ₂ SO ₄ / 0.002 g CuSO ₄	4 g
Antifoam	11057984	0.97 g Na ₂ SO ₄ / 0.03 g Silicon Antifoam	1 g
Titanium Micro	11057981	1.5 g K ₂ SO ₄ / 0.045 g CuSO ₄ · 5 H ₂ O, 0.045 g TiO ₂	1.59 g
Copper Micro	11057985	1.5 g K $_2$ SO $_4$ / 0.15 CuSO $_4 \cdot$ 5 H $_2$ O	1.65 g


The titration

Receiver: $B(OH)_3 + NH_3 + H_2O \rightleftharpoons NH_4^+ + B(OH)_4^-$

Titration: $B(OH)_4^- + HX \rightarrow X^- + B(OH)_3 + H_2O$

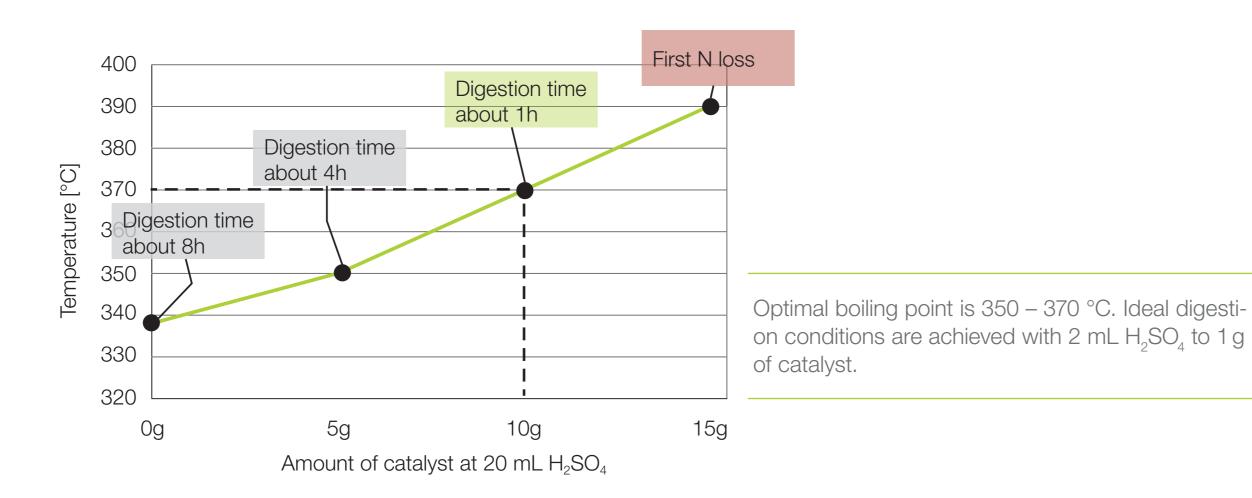
The pH in the acidic receiver solution rises upon addition of ammonia. The nitrogen and protein content is then determined by titration of the borate complex.

 $HX = H_2SO_4$ or HCI

Endpoint titration boric acid: $B(OH)_3 + 2 H_2O \Rightarrow B(OH)_4^- + H_3O^+$ (pK_a = 9.24)

The result calculation	
$\%N = \frac{[V(1) - V(BI)] \cdot F \cdot c \cdot f \cdot M(N)}{m \cdot 1000} \cdot 100\%$	
% P = % N · PF	

- V(1): consumption of titrant, sample [mL]
- V(BI): average consumption of titrant, blank [mL]
- molar reaction factor (1 = HCl, 2 = H_2SO_4) F:
- concentration of titrant [mol /L] C:
- factor of titrant f:
- M(N): molecular weight of N (14,007 [g/mol])
- sample weight [g] m:
- 1000: conversion factor (mL in L)
- PF: protein factor
- % N: % of weight of N


% P: % of weight of protein

The aim of Kjeldahl Tablets is to accelerate the digestion by:

· Catalysis by metal salts

· Increasing the boiling point of H_2SO_4 by sulfate salts (K_2SO_4)

Attention: With boiling temperatures above 390 °C nitrogen losses are possible \implies leads to too low results!

Example:

Titrant:	$0.25 \text{ mol/L H}_2SO_4$			
	f = 1.000			
Weighing:	0.750 g			
Blank value:	1.0 mL			
Titration volum	ne for sample: 7.5 mL			

$(7.5 \,\text{mL} - 1 \,\text{mL}) \cdot 2 \cdot 0.25 \cdot 1 \cdot 14.007 \cdot 100 \,\% = 6.07 \,\% \,\text{N}$ 0.750 g · 1000 6.07 % N · 6.25 = 37.94 % P

Factors for the conversion of nitrogen in protein

Food	Amount N(%) p	orotein factor	Food	Amount N(%) protein factor		
Egg / meat / fish	16.0	6.25	Almonds	19.3	5.18	
Milk / ice cream / casein	15.7	6.38	Peanuts / brasil nuts	18.3	5.46	
Wheat / baked prod. / oa	at 17.5	5.70	Tree nut / coconut	18.9	5.30	
Rye / soy	17.5	5.70	Rice	19.0	5.26	
Barley / maize / pulses	16.0	6.25	Beer / brewing sugars	16.0	6.25	