# **Training Papers Spray Drying**

# Contents

| 1 |       | What is spray drying                                          |
|---|-------|---------------------------------------------------------------|
|   | 1.    | Introduction                                                  |
|   |       |                                                               |
| 2 |       | Spray drying principle                                        |
|   | 2.1   | Dispersion of the feed solution in small droplets             |
|   | 2.2   | Mixing of spray and drying medium with heat and mass transfer |
|   | 2.3   | Open-cycle and closed-cycle system                            |
|   | 2.4   | Drving of sprav                                               |
|   | 2.4.1 | Separation of product and air                                 |
| 3 |       | General applications                                          |
| 4 |       | Mini Spray Dryer                                              |
|   | 4.1   | Spray Drying with the BÜCHI Mini Spray Dryer B-290            |
|   | 4.2   | Design of the Instrument                                      |
|   | 4.2.1 | Diagram of the dry air flow                                   |
|   | 4.2.2 | Diagram of the product flow and spray nozzle                  |
|   | 4.3   | Instrument settings                                           |
|   | 4.3.1 | Interaction of the individual parameters                      |
|   | 4.3.2 | Inlet temperature / outlet temperature                        |
|   | 4.3.3 | Aspirator                                                     |
|   | 4.3.4 | Pump performance                                              |
|   | 4.3.5 | Spray flow and concentration of solution                      |
| 5 |       | Applications                                                  |
| - | 5.1   | Sprav drving                                                  |
|   | 5.2   | Micronization or structural change                            |
|   | 5.3   | Micro encapsulation                                           |
|   | 5.4   | Englobing                                                     |
|   | 5.5   | Overview of selected applications                             |
|   |       |                                                               |

Copyright<sup>®</sup> **BÜCHI** Labortechnik AG, 1997 - 2002

English, Version B (19 pages)

Order Code

Spray drying

97758

#### 1

## What is spray drying

| 1.  | Introduction           | Spray drying is a very widely applied, technical method used to dry<br>aqueous or organic solutions, emulsions etc., in industrial chemis-<br>try and food industry. Dry milk powder, detergents and dyes are<br>just a few spray dried products currently available. Spray drying<br>can be used to preserve food or simply as a quick drying method.<br>It also provides the advantage of weight and volume reduction. It is<br>the transformation of feed from a fluid state into a dried particulate<br>form by spraying the feed into a hot drying medium. Intensive re-<br>search and development during the last two decades has resulted<br>in spray drying becoming a highly competitive means of drying a<br>wide variety of products. The range of product applications contin-<br>ues to expand, so that today spray drying has connections with<br>many things we use daily. |
|-----|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | Spray drying principle | Spray drying involves evaporation of moisture from an atomised<br>feed by mixing the spray and the drying medium. The drying me-<br>dium is typically air. The drying proceeds until the desired moisture<br>content is reached in the sprayed particles and the product is then<br>separated from the air. The mixture being sprayed can be a sol-<br>vent, emulsion, suspension or dispersion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.1 | Dispersion of the feed | The complete process of spray drying basically consists of a se-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# solution in small droplets

quence of four processes:

The dispersion can be achieved with a pressure nozzle, a two fluid nozzle, a rotary disk atomiser or an ultrasonic nozzle. So different kinds of energy can be used to disperse the liquid body into fine particles. The selection upon the atomiser type depends upon the nature and amount of feed and the desired characteristics of the dried product. The higher the energy for the dispersion, the smaller are the generated droplets.

#### **Nozzle and product**



#### Example:

100 ml of a solution are sprayed, resulting in approx. 8 x  $10^8$  = 800,000,000 drops (25 microns) representing approx. 12 m<sup>2</sup> of surface area. This clearly demonstrates that the solvent (mainly water) is vaporized extremely quickly.

#### 2.2 Mixing of spray and drying medium (air) with heat and mass transfer

#### **Co-Current flow**



The manner in which spray contacts the drying air is an important factor in spray dryer design, as this has great bearing on dried product properties by influencing droplet behaviour during drying.

This mixing is an important aspect and defines the method of spray drying:

The material is sprayed in the same direction as the flow of hot air through the apparatus. The droplets come into contact with the hot drying air when they are the most moist. The product is treated with care due to the sudden vaporization.

#### **Counter-Current flow**



The material is sprayed in the opposite direction of the flow of hot air. The hot air flows upwards and the product falls through increasingly hot air into the collection tray. The residual moisture is eliminated, and the product becomes very hot. This method is suitable only for thermally stabile products.

#### Combined



The advantages of both spraying methods are combined. The product is sprayed upwards and only remains in the hot zone for a short time to eliminate the residual moisture. Gravity then pulls the product into the cooler zone. Due to the fact that the product is only in the hot zone for a short time, the product is treated with care.

#### **Disk atomizer (rotary wheel)**



The material to be sprayed flows onto a rapidly rotating atomizing disk and is converted to a fine mist. The drying air flows in the same direction. The product is treated with care, just as in the co-current flow method.

2.3 Open-cycle and closed cycle system

Air is mostly used as drying medium. The air stream is heated electrically or in a burner and after the process exhausted to atmosphere. This is a open-cycle system. If the heating medium is recycled and reused, typically an inert gas such as nitrogen, this is a closed-cycle system. These layout is typically chosen, when flammable solvents, toxic products or oxygen sensitive products are processed.

The most common type of spray dryer is the open-cycle, co-current spray dryer. In such a design, the atomised feed and the drying air is simultaneously injected into a spray drying chamber from the same direction.

#### 2.4 Drying of spray (removal of moisture)

As soon as droplets of the spray come into contact with the drying air, evaporation takes place from the saturated vapour film which is quickly established at the droplet surface. Due to the high specific surface area and the existing temperature and moisture gradients, an intense heat and mass transfer results in an efficient drying. The evaporation leads to a cooling of the droplet and thus to a small thermal load. Drying chamber design and air flow rate provide a droplet residence time in the chamber, so that the desired droplet moisture removal is completed and product removed from the dryer before product temperatures can rise to the outlet drying air temperature. Hence, there is little likelihood of heat damage to the product.

# **2.4.1 Separation of product** In principal, two system are used to separate the product from the drying medium:

- 1 Primary separation of the drying product takes place at the base of the drying chamber
- 2 Total recovery of the dried product in the separation equipment

Most common separation equipment is the cyclone. Based on inertial forces, the particles are separated to the cyclone wall as a down-going strain and removed. Other systems are electrostatic precipitators, textile (bag) filters or wet collectors like scrubbers.

#### 3. General applications

The list of materials which are successfully spray dried is enormous, so only general principles should be listed hereby:

| Application         | Goal / use                                                                  | Practicalapplication                      |
|---------------------|-----------------------------------------------------------------------------|-------------------------------------------|
| Spray drying        | Drying of inorganic<br>and organic products                                 | corn starch<br>pigments<br>dried milk     |
| Micronization       | Reduction of a product's par- ticle size                                    | salt<br>dyes                              |
| Micro encapsulation | A liquid product is embed-<br>ded in a solid matrix                         | perfumes<br>strawberry aroma<br>peach oil |
| Englobing           | A solid product is embed-<br>ded in another solid or a<br>mixture of solids | carotenoids in gelatins                   |

#### **Possible applications**

## 4

## **Mini Spray Dryer**

| 4.1 | Spray Drying with the<br>BÜCHI Mini Spray<br>Dryer B-290 | The Mini Spray Dryer B-290 is a laboratory scale system to perform spray<br>drying processes down to 50 ml batch volume and up to 1 litre solution per<br>hour. Due to the glassware, the complete drying process from the two-<br>fluid nozzle down to the collection vessel is visible. Even a lot of fundamen-<br>tal investigations of the spray drying process has been undertaken, it still<br>remains a step with some uncertainties and difficulties to model. One<br>reason is the big influence of material properties and drying behaviour of<br>the product and another is the complex fluid dynamics in a spray dryer. |
|-----|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                          | Thus, small scale feasibility studies and trials are an often used approach<br>to win some experience with a certain product to spray dry. Even the direct<br>scale-up from a lab-bench unit to a big system cannot be easily made, it<br>helps to understand and quantify the drying behaviour. For small batch<br>sizes e.g. in pharmaceutical applications, a small spray dryer is particularly<br>interesting to win small product volumes within a short time. Thermolabile<br>components such as enzymes or antibiotics remain fully active.                                                                                  |
| 4.2 | Design of the<br>Instrument                              | The Mini Spray Dryer B-290 functions according to the same principle as<br>the co-current flow atomizer, i.e. the sprayed product and drying air flow<br>are in the same direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# 4.2.1 Diagram of the dry air flow



- Air intake
- Heater
- Flow stabilizer intake into the drying chamber
- Cyclone, the product is separated from the air flow here
- Aspirator
- Temperature sensor, air inlet
- Temperature sensor, air outlet
- Container for collecting finished product

#### 4.2.2 Diagram of the product flow and spray nozzle



- A Solution, emulsion or dispersion of the product
- B Peristaltic feed pump
- C Two fluid nozzle (spray mist, spray cone)
- D Compressed air or inert gas supply connection
- E Cooling water connection
- F Nozzle cleaning device, consisting of needle pneumatically pushed trough nozzle

#### 4.3 Instrument settings

Spray Drying is a method where the result strongly depends upon the material properties. Thus, the instrument settings, namely inlet temperature, feed rate, spray air flow and aspirator flow are in a combined system influencing the product parameters:

- Temperature load
- Final humidity
- Particle size
- Yield

The optimisation of these parameters are usually made in a "Trial & Error" process. Some initial conditions can be found in the application database for equal or similar products.

| parameter<br>dependence         | aspirator<br>rate ↑                                         | air humidity<br>↑                                            | inlet tempe-<br>rature ↑                                    | spray air<br>flow ↑                             | feed rate ↑                                                | solvent ins-<br>tead of wa-<br>ter                            | concen-<br>tration ↑                                     |
|---------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| outlet<br>tempera-<br>ture      | ↑↑ less heat<br>losses based<br>on total inlet<br>of energy | ↑ more<br>energy<br>stored in<br>humidity                    | ↑↑↑ direct<br>proportion                                    | ↓ more cool<br>air to be<br>heated up           | ↓↓ more<br>solvent to<br>be evapo-<br>rated                | ↑↑↑ less<br>heat of en-<br>ergy of sol-<br>vent               | ↑↑ less<br>water to be<br>evaporated                     |
| particle<br>size                | -                                                           | -                                                            | -                                                           | ↓↓↓ more<br>energy for<br>fluid disper-<br>sion | (↑) more<br>fluid to dis-<br>perse                         | (↓) less<br>surface<br>tension                                | ↑↑↑ more<br>remaining<br>product                         |
| final<br>humidity of<br>product | ↑↑lower par-<br>tial pressure<br>of evapo-<br>rated water   | ↑↑ higher<br>partial pres-<br>sure of<br>drying air          | ↓↓ lower<br>relative<br>humidity<br>in air                  | -                                               | 11 more wa-<br>ter leads to<br>higher particel<br>pressure | ↓↓↓ no wa-<br>ter in feed<br>leads to very<br>dry product     | ↓ less water<br>evaporated,<br>lower partial<br>pressure |
| yield                           | ↑↑ better<br>separation<br>rate in cy-<br>clone             | (↓) more<br>humidity<br>can lead to<br>sticking pro-<br>duct | (↑)<br>eventually<br>dryer pro-<br>duct prevent<br>sticking | -                                               | (↓↑) de-<br>pends on<br>application                        | ↑↑ no<br>hygroscopic<br>behaviour<br>leads to<br>easier dying | ↑ bigger<br>particles<br>lead to<br>higher<br>separation |

#### 4.3.1 Interaction of the individual parameters

- Larger temperature differences between the inlet and outlet temperatures result in a larger amount of residual moisture.
- A high aspirator speed means a shorter residence time in the device and results in a larger amount of residual moisture.
- A high aspirator speed results in a higher degree of separation in the cyclone.
- Higher spray flow rates tend to result in smaller particles.
- Higher spray concentrations result in larger particles.
- Higher pump speed, result in a lower outlet temperature.

# 4.3.2 Inlet temperature / outlet temperature

<u>Inlet temperature</u> is understood as being the temperature of the heated drying air. The drying air is sucked or blowed in over a heater by the aspirator. The heated air temperature is measured prior to flowing into the drying chamber. When spray drying a solution, emulsion or dispersion the solvent is removed by vaporization.

The temperature of the air flow does not have to be higher than the boiling point of water to evaporate the individual drops during the short residence time. The gradient between wet surface and not saturated gas leads to an evaporation at low temperatures. The final product is separated and has no further thermal load.

The temperature of the air with the solid particles before entering the cyclone is designated as the <u>outlet temperature</u>. This temperature is the resultig temperature of the heat and mass balance in the drying cylinder and thus cannot be regulated. Due to the intese heat and mass transfer and the loss of humidity, the particles can be regarded to have the same temperature as the gas. Thus, as a rule of thumb is: outlet temperature = max. product temperature.

The outlet temperature is the result of the combination of the following parameters:

- Inlet temperature
- Aspirator flow rate (quantity of air)
- Peristaltic pump setting
- Concentration of the material being sprayed

The optimal choice for the temperature difference between the inlet and the outlet temperature is one of the most important points to consider when spray drying. Of course, other product specific factors, such as the melting point or decay temperature, must be taken into consideration. In spite of this, there is still some room for adjustment. The throughput of the device as well as the residual moisture content can be influenced within this temperature difference range.

The following table shows the interaction between the inlet and outlet temperatures, depending on the pump throughput. The following guidelines can be derived from the data:



### 4.3.4 Pump performance

The peristaltic pump feeds the spray solution to the nozzle. The pump's speed affects the temperature difference between the inlet temperature and the outlet temperature. The pump rate directly corresponds to the inlet mass. The higher the throughput of solution, the more energy is needed to evaporate the droplet to particles.

Thus, the outlet temperature decreases. The limitation of the pump is when the particules are not dry enough resulting in sticky product or wet walls in the cylinder. The pump throughput is also dependent upon various factors such as the viscosity of the spray solution and tubing diameter.

The following guidelines can be derived from the facts described above as they relate to the pump rate:



Tube used: Silicon tube, inner diameter 2.0 mm

Increasing the pump rate lowers the outlet temperature and thus increases the temperature difference between the inlet temperature and the outlet temperature.

Reducing the pump rate while holding the inlet temperature and aspirator flow rate constant increases the dry content of the final product.

#### 4.3.5 Spray flow and concentration of solution

The spray flow rate is the amount of compressed air needed to disperse the solution, emulsion or suspension. A gas other than compressed air can be used.

The spray flow rate can be set to between 300 and 800 l/h on the device. A rotameter indicates the spray flow throughput. The table below gives a correlation of the flow meter and the gas throughput.

The particle size of the final product can be influenced by the spray flow rate setting.

| Height (mm) | Normlitre/hour | Pressure drop | Volume flow (real) |
|-------------|----------------|---------------|--------------------|
| 5           | 84             |               |                    |
| 10          | 138            |               |                    |
| 15          | 192            |               |                    |
| 20          | 246            | 0.15          | 282.9              |
| 25          | 301            | 0.18          | 355.18             |
| 30          | 357            | 0.23          | 439.11             |
| 35          | 414            | 0.3           | 538.2              |
| 40          | 473            | 0.41          | 666.93             |
| 45          | 536            | 0.55          | 830.8              |
| 50          | 601            | 0.75          | 1051.75            |
| 55          | 670            | 1.05          | 1373.5             |
| 60          | 742            | 1.35          | 1743.7             |
| 65          | 819            | 1.8           | 2293.2             |

A guideline is:

The higher the spray flow rate, the smaller the size of the particles in the final product.

The spray concentration influences the particle size.

The higher the concentration of the spray solution, the larger and more porous the dried particles.

## 5

# **Applications**

#### 5.1 Spray drying

Spray drying is suited for most real or colloidal solutions, for emulsions and dispersions as long as the dried product behaves like a solid.



Diagram of spray drying inorganic or organic products

An aqueous solution of the product (A) is dispersed into fine droplets (B) using a two fluid nozzle. The solvent evaporates immediately surrounding the product in a vapor cloud that protects the product from thermal load. As soon as the critical concentration is exceeded, nucleation starts forming a solid shell. After the solvent is dryed away from the surface, the interface moves into the core (second step of drying). The final product (C) is a fine, amorphous or crystallized material. Spraying a highly concentrated solution results in a more porous final product.

| Product                | Inlet °C | Outlet °C | Spray<br>concentration % |
|------------------------|----------|-----------|--------------------------|
| Foodstuffs             |          |           |                          |
| Low-fat milk           | 174      | 102       | 50                       |
| Yeast                  | 95       | 55        | 60                       |
| Aroma/Cosmetics        |          |           |                          |
| Beer concentrate       | 150      | 110       | 30-40                    |
| Olive leaf extract     | 150      | 90        | 36                       |
| Medical/pharmaceutical |          |           |                          |
| Blood plasma           | 180      | 100       | 5                        |
| Peptides               | 110      | 70        | 2                        |
| Chemical products      |          |           |                          |
| Dispersion dyes        | 150      | 95        | 20                       |

# 5.2 Micronization or structural change

The micronization or structural change is the change of morphology, e.g. if a fine powder is needed. This has a positive effect on the solubility or measurability of the final product. The main advantage of micronization is that a very regular particle size is achieved.



Diagram of the micronization or structural change process

The crystalline product (A) is dissolved in a solvent (B) and this solution (C) is dispersed into small droplets (D). The result is a final product (E) just like the final product described in the section on spray drying.

| Product                       | Inlet °C | Outlet °C | Spray<br>concentration % |  |  |
|-------------------------------|----------|-----------|--------------------------|--|--|
| Foodstuffs                    |          |           |                          |  |  |
| Lactose                       | 160      | 105       | 30                       |  |  |
| Corn starch                   | 130      | 70        | 40                       |  |  |
| Aroma/Cosmetics               |          |           |                          |  |  |
| Metalsoap                     | 165      | 122       | 60                       |  |  |
| Detergent                     | 200      | 110       | 40                       |  |  |
| Medical/pharmaceutical        |          |           |                          |  |  |
| Mixed products of             | 180      | 80        | 37                       |  |  |
| fructose-amino acid compounds | 3        |           |                          |  |  |
| Chemical products             |          |           |                          |  |  |
| Calcium carbonate             | 220      | 100       | 10                       |  |  |
| Sodium citrate                | 160      | 90        | 20                       |  |  |

#### 5.3 Micro encpsulation



Diagram of the micro encapsulation process

An emulsion (D) is created from the liquid product to be treated (A), a carrier substance (B) such as maltodextrin and a filmogen solution (C) such as gum arabic in water. This emulsion is then sprayed into small droplets (E). The solvent evaporates leading to a solid matrix around the dispersed second phase (F). The result is that the small droplets of the product (A) are stored in the carrier substance (B) and embedded in the filmogen (C).

| Product                                                          | Inlet °C   | Outlet °C | Spray<br>concentration % |  |  |  |  |
|------------------------------------------------------------------|------------|-----------|--------------------------|--|--|--|--|
| Foodstuffs                                                       | Foodstuffs |           |                          |  |  |  |  |
| Soyabean oil in maltodextrin/gelatins                            | 150        | 90        | 30                       |  |  |  |  |
| Aroma/Cosmetics                                                  |            |           |                          |  |  |  |  |
| Aroma, strawberry in maltodextrin/gelati<br>arabic 1,5 : 1,5 : 3 | ns<br>150  | 90        | 35                       |  |  |  |  |
| Medical/pharmaceutical                                           |            |           |                          |  |  |  |  |
| Guajazulene in maltodextrin/gum<br>arabic 1 : 2 : 1              | 120        | 70        | ca. 30                   |  |  |  |  |

#### 5.4 Englobing



Diagram of the englobing process

The englobing process is analogous to the micro encapsulation process, whereby a solid material is used instead of a liquid product. A solution or dispersion (D) is created from the product to be treated (A), a matrix (B) and water eventually with additional filmogen (C). This solution is then sprayed into small droplets (E). The matrix and / or filmogen lead to an agglomeration or coating of the suspended particles (F).

| Product                                                         | Inlet °C | Outlet °C | Spray<br>concentration % |
|-----------------------------------------------------------------|----------|-----------|--------------------------|
| Foodstuffs                                                      |          |           |                          |
| Inverted sugar (date pulp) in<br>Lactose 1:1                    | 100      | 80        | 20                       |
| Medical/pharmaceutical                                          |          |           |                          |
| Streptococci in low-fat milk<br>powder/ glucose/gelatin 1:1:1:3 | 90       | 70        | 40                       |

# 5.5 Overview of selected applications

The application depends on the kind of product used, such as viscosity, density, additives etc. Therefore, the given parameters can not previsely be overtaken

### Foodstuffs

Spray drying

| Product                       | Inlet °C | Outlet °C | Spray concentration % |
|-------------------------------|----------|-----------|-----------------------|
| Baby food                     | 160      | 95        | 40                    |
| Beer                          | 180      | 108       |                       |
| Casein                        | 150      | 90        | 6                     |
| Yeast                         | 95       | 55        | 60                    |
| Krill                         | 180      | 80        | 10                    |
| Lactose                       | 160      | 105       | 30                    |
| Low-fat milk                  | 174      | 102       | 50                    |
| Corn starch                   | 130      | 70        | 40                    |
| Milk                          | 110      | 70        | 15                    |
| Whey                          | 180      | 80        | 6 /45                 |
| Soyabean extract (suspension) | 130      | 75        | 80                    |
| Tofu                          | 110      | 60        | 17                    |

#### Englobing/micro encapsulation

| Product                               | Inlet °C                      | Outlet °C | Spray concentration % |  |  |  |  |
|---------------------------------------|-------------------------------|-----------|-----------------------|--|--|--|--|
| Fruit concentrate, raspberry,         | Fruit concentrate, raspberry, |           |                       |  |  |  |  |
| in maltodextrin,2:8                   | 150                           | 90        | 30                    |  |  |  |  |
| Fruit concentrate, orange,            |                               |           |                       |  |  |  |  |
| in maltodextrin,2:8                   | 150                           | 90        | 40                    |  |  |  |  |
| Inverted sugar (date pulp) in lactose |                               |           |                       |  |  |  |  |
| 1:1                                   | 100                           | 80        | 20                    |  |  |  |  |
| Black currant juice in maltodextrin   | 170                           | 100       | 47                    |  |  |  |  |
| Soybean oil in maltodextrin/gelatin   | 150                           | 90        | 30                    |  |  |  |  |
| Sugar/fat mixture in maltodextrin/    | 160                           | 90        | 22                    |  |  |  |  |
| gum arabic 25:15:50:10                |                               |           |                       |  |  |  |  |

# Aromas, cosmetics, cleaners and detergents

Spray drying

| Product               | Inlet °C | Outlet °C | Spray concentration % |
|-----------------------|----------|-----------|-----------------------|
| Valerian extract      | 150      | 100       | 25                    |
| Beer concentrate      | 150      | 110       | 30 - 40               |
| Chicory extract       | 130      | 75        | 38                    |
| Pine bark extract     | 120      | 85        | 4                     |
| Chestnut extract      | 200      | 130       | 20                    |
| Metal soap            | 165      | 122       | 60                    |
| Microfoam beads       | 160      | 114       | 3                     |
| Sodium citrate        | 160      | 90        | 20                    |
| Sodium orthophosphate | 180      | 110       | 40                    |
| Olive leaf extract    | 150      | 90        | 36                    |
| Liquorice extract     | 100      | 75        | 36                    |
| Detergent             | 200      | 110       | 40                    |
| Fabric softener       | 125      | 75        | 20                    |
| Xanthane mixture      | 130      | 70        | -                     |
| Zeolite               | 180      | 120       | 10                    |

### Englobing/micro encapsulation

| Product                             | Inlet °C | Outlet °C | Spray concentration % |
|-------------------------------------|----------|-----------|-----------------------|
| Aroma, strawberry in maltodextrin/  | 150      | 90        | 35                    |
| gum arabic 1,5 : 1,5 : 3            |          |           |                       |
| Aroma, orange in maltodextrin/      | 150      | 90        | 17                    |
| gum arabic 1,5 : 1,5 : 3            |          |           |                       |
| Cardamom oil in maltodextrin/       | 170      | 100       | 20                    |
| gum arabic 1 : 20 : 39              |          |           |                       |
| Date juice in maltodextrin/         | 120      | 90        | 30                    |
| gum arabic 25 : 25 : 1              |          |           |                       |
| Caraway oil in maidex/              | 140      | 100       | 50                    |
| gum arabic                          |          |           |                       |
| Perfume oil in maltodextrin/        | 130      | 70        |                       |
| gum arabic 1 : 2 : 1                |          |           |                       |
| Peach oil in maltodextrin           | 150      | 100       | 20                    |
| Bubble bath in sodium chloride1 : 2 | 160      | 100       | 15                    |
| Cinnamon oil in maltodextrin/       | 170      | 100       | 20                    |
| gum arabic 1 : 3 : 6                |          |           |                       |
| Lemon oil in maltodextrin/          | 130      | 90        | 20                    |
| gum arabic                          |          |           |                       |

# **Medical/Pharmaceutical**

Spray drying

| Product                                  | Inlet °C | Outlet °C | Spray<br>concentration % |
|------------------------------------------|----------|-----------|--------------------------|
| Albumin                                  | 110      | 60        | 5                        |
| Lyophilized anti-progresterone serum     | 80       | 60        | 1                        |
| Blood plasma                             | 180      | 100       | 5                        |
| Dextran                                  | 154      | 120       | 20                       |
| Enzymes / coenzymes                      | 80       | 55        | 12                       |
| Fructose-amino acid compounds            | 180      | 80        | 37                       |
| Galactomannan                            | 200      | 115       | 5                        |
| Gelatin capsule dispersions              | 105      | 80        | 20                       |
| Glucose / amino acid compounds 1:1       | 130      | 80        | 10                       |
| Mannitol with enzymes                    | 100      | 55        | 15                       |
| Combination vaccines                     | 190      | 140       | -                        |
| Organ extracts with tetra-Na-diphosphate |          |           |                          |
| 1 : 0,43                                 | 150      | 88        | 11                       |
| Peptides                                 | 110      | 70        | 2                        |
| Vitamin A + E / gelatin-emulsion         | 100      | 55        |                          |
| Cell suspension (bacteria cultures)      | 90       | 60        | ca. 50                   |

### Englobing/micro encapsulation

| Product                               | Inlet °C | Outlet °C | Spray<br>concentration % |
|---------------------------------------|----------|-----------|--------------------------|
| Carotinoid in gelatin 40 : 60         | 170      | 100       | 25                       |
| Guajazulene in maltodextrin/          | 120      | 70        | ca. 30                   |
| gum arabic 1 : 2 : 1                  |          |           |                          |
| Streptococci in low-fat milk powder / | 90       | 70        | 40                       |
| glucose/gelatin 1 : 1 : 1 : 3         |          |           |                          |

### **Chemical products**

### Spray drying

| Product                        | Inlet °C | Outlet °C | Spray<br>concentration % |
|--------------------------------|----------|-----------|--------------------------|
| Acrylamide                     | 125      | 69        | 50                       |
| Albigen                        | 180      | 90        | 10                       |
| Ammonium chloride              | 180      | 75        | 20                       |
| Ammonium nitrate               | 180      | 100       | 20                       |
| Lead oxide                     | 150      | 90        | _                        |
| Calciumhydrogen citrate        | 200      | 110       | 50                       |
| Calcium carbonate              | 220      | 100       | 10                       |
| Calcium phosphate              | 190      | 100       | _                        |
| Dicalcium phosphate            | 170      | 90        | 20                       |
| Disodium phospate              | 200      | 140       | 50                       |
| Dispersion dyes                | 150      | 95        | 20                       |
| Iron oxide                     | 170      | 125       | _                        |
| Pigments                       | 130      | 110       | 36                       |
| Glass powder                   | 120      | 90        | 20                       |
| Latex rubber                   | 120      | 70        | 20                       |
| Indigo-sodium sulfate compound | 150      | 90        | 30                       |
| Potassium hydrogen citrate     | 200      | 110       | 50                       |
| China clay                     | 180      | 130       | 33                       |
| Various ceramics               | 150      | 120       | 46                       |
| Synthetic glues                | 100      | 70        | 20                       |
| Latex                          | 160      | 90        | 31                       |
| Lignin                         | 130      | 55        | 7/4                      |
| Magnesium phosphate            | 120      | 90        | 15                       |
| Melamine resin                 | 120      | 80        | _                        |
| Metal oxide                    | 210      | 135       | <u> </u>                 |
| Sodium citrate                 | 160      | 90        | 20                       |
| Sodium orthophosphate          | 180      | 110       | 40                       |
| Sodium sulfite                 | 180      | 90        | 20                       |
| Cermaic oxide                  | 100      | 80        | 26                       |
| Phenolic resin                 | 135      | 105       | 50                       |
| Polyacrylamide                 | 204      | 111       | 3                        |
| PVC-latex                      | 160      | 90        | 31                       |
| Clay suspension                | 200      | 100       | 1,2                      |
| Peat extract                   | 120      | 80        | 1,5                      |
| Vinyl acetate polymer          | 90       | 50        | 25                       |
| Zeolite                        | 180      | 120       | 10                       |
| Tin oxide                      | 230      | 170       | _                        |
| Zirconium oxide                | 180      | 100       | _                        |